A model of epigenetic evolution based on theory of open quantum systems.

Systems and Synthetic Biology Pub Date : 2013-12-01 Epub Date: 2013-06-18 DOI:10.1007/s11693-013-9109-3
Masanari Asano, Irina Basieva, Andrei Khrennikov, Masanori Ohya, Yoshiharu Tanaka, Ichiro Yamato
{"title":"A model of epigenetic evolution based on theory of open quantum systems.","authors":"Masanari Asano, Irina Basieva, Andrei Khrennikov, Masanori Ohya, Yoshiharu Tanaka, Ichiro Yamato","doi":"10.1007/s11693-013-9109-3","DOIUrl":null,"url":null,"abstract":"<p><p>We present a very general model of epigenetic evolution unifying (neo-)Darwinian and (neo-)Lamarckian viewpoints. The evolution is represented in the form of adaptive dynamics given by the quantum(-like) master equation. This equation describes development of the information state of epigenome under the pressure of an environment. We use the formalism of quantum mechanics in the purely operational framework. (Hence, our model has no direct relation to quantum physical processes inside a cell.) Thus our model is about probabilities for observations which can be done on epigenomes and it does not provide a detailed description of cellular processes. Usage of the operational approach provides a possibility to describe by one model all known types of cellular epigenetic inheritance. </p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824820/pdf/11693_2013_Article_9109.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11693-013-9109-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/6/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a very general model of epigenetic evolution unifying (neo-)Darwinian and (neo-)Lamarckian viewpoints. The evolution is represented in the form of adaptive dynamics given by the quantum(-like) master equation. This equation describes development of the information state of epigenome under the pressure of an environment. We use the formalism of quantum mechanics in the purely operational framework. (Hence, our model has no direct relation to quantum physical processes inside a cell.) Thus our model is about probabilities for observations which can be done on epigenomes and it does not provide a detailed description of cellular processes. Usage of the operational approach provides a possibility to describe by one model all known types of cellular epigenetic inheritance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于开放量子系统理论的表观遗传进化模型。
我们提出了一个非常通用的表观遗传进化模型,它统一了(新)达尔文观点和(新)拉马克观点。进化以量子(类)主方程给出的适应性动力学形式表示。该方程描述了表观基因组信息状态在环境压力下的发展。我们在纯粹的操作框架中使用了量子力学的形式主义。(因此,我们的模型与细胞内的量子物理过程没有直接关系)。因此,我们的模型涉及的是对表观基因组进行观测的概率,而不是对细胞过程的详细描述。使用操作方法可以用一个模型描述所有已知类型的细胞表观遗传。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting stable functional peptides from the intergenic space of E. coli. The role of CRKL in breast cancer metastasis: insights from systems biology. The synthetic biology puzzle: a qualitative study on public reflections towards a governance framework. Exploring the differences in metabolic behavior of astrocyte and glioblastoma: a flux balance analysis approach. Evolving modular genetic regulatory networks with a recursive, top-down approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1