{"title":"The role of CRKL in breast cancer metastasis: insights from systems biology.","authors":"Abderrahim Chafik","doi":"10.1007/s11693-015-9180-z","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer metastasis is a complex and still weakly understood process that involves diverse cellular pathways. It accounts for the majority of deaths from breast cancer. Recently, microRNAs (miRNAs), small non-coding RNAs that regulate gene expression post-transcriptionally, have been shown to be involved in breast cancer metastasis. In particular, in a recent work it has been found that miR-429 may have a role in the inhibition of migration and invasion of breast cancer cells. Its target gene CRKL has been identified as a potential candidate. In this paper, by using systems biology tools we have shown that CRKL is involved in positive regulation of ERK1/2 signaling pathway and contribute to the regulation of LYN through a topological generalization of feed forward loop.</p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11693-015-9180-z","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11693-015-9180-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/9/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Breast cancer metastasis is a complex and still weakly understood process that involves diverse cellular pathways. It accounts for the majority of deaths from breast cancer. Recently, microRNAs (miRNAs), small non-coding RNAs that regulate gene expression post-transcriptionally, have been shown to be involved in breast cancer metastasis. In particular, in a recent work it has been found that miR-429 may have a role in the inhibition of migration and invasion of breast cancer cells. Its target gene CRKL has been identified as a potential candidate. In this paper, by using systems biology tools we have shown that CRKL is involved in positive regulation of ERK1/2 signaling pathway and contribute to the regulation of LYN through a topological generalization of feed forward loop.