Yiwen Wang , Junhua Hu , Suxiang Liu , Di Zhu , Baofeng Zhao , Angang Song
{"title":"Fast solvent evaporation of phase pure CuBi2O4 photocathodes for photoelectrocatalytic water splitting","authors":"Yiwen Wang , Junhua Hu , Suxiang Liu , Di Zhu , Baofeng Zhao , Angang Song","doi":"10.1016/j.jelechem.2023.117639","DOIUrl":null,"url":null,"abstract":"<div><p>P-type metal oxide semiconductor CuBi<sub>2</sub>O<sub>4</sub> exhibits excellent energy band structures and photoelectric response characteristics, which are critical for photoelectrocatalytic water splitting. However, the photocurrent densities are still well below the theoretical limit due to poor charge carrier separation and transport properties. In this work, we report a synthetic method for the preparation of phase-pure CuBi<sub>2</sub>O<sub>4</sub> photocathode films via spray pyrolysis by adjusting the evaporation rate of the atomized droplets. An increase in the evaporation rate of the solvent may fix the structure of the deposited film faster and decrease the time available for the establishment of the segregation gradient, thus producing phase-pure semiconductor films. This method reduces process complexity and cost, and the applicability of spray pyrolysis for the preparation of phase-pure CuBi<sub>2</sub>O<sub>4</sub> films is also confirmed. In addition, the photoelectrochemical evaluation of the samples prepared under different treatment conditions reveals that hole transport critically affects the photoelectrocatalytic performance of CuBi<sub>2</sub>O<sub>4</sub> photocathodes. CuO can be used as a hole transport layer to promote the collection and transfer of holes and reduce the recombination of photogenerated carriers.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157266572300499X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
P-type metal oxide semiconductor CuBi2O4 exhibits excellent energy band structures and photoelectric response characteristics, which are critical for photoelectrocatalytic water splitting. However, the photocurrent densities are still well below the theoretical limit due to poor charge carrier separation and transport properties. In this work, we report a synthetic method for the preparation of phase-pure CuBi2O4 photocathode films via spray pyrolysis by adjusting the evaporation rate of the atomized droplets. An increase in the evaporation rate of the solvent may fix the structure of the deposited film faster and decrease the time available for the establishment of the segregation gradient, thus producing phase-pure semiconductor films. This method reduces process complexity and cost, and the applicability of spray pyrolysis for the preparation of phase-pure CuBi2O4 films is also confirmed. In addition, the photoelectrochemical evaluation of the samples prepared under different treatment conditions reveals that hole transport critically affects the photoelectrocatalytic performance of CuBi2O4 photocathodes. CuO can be used as a hole transport layer to promote the collection and transfer of holes and reduce the recombination of photogenerated carriers.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.