Chromatin Modulation by Histone Deacetylase Inhibitors: Impact on Cellular Sensitivity to Ionizing Radiation.

Molecular and cellular pharmacology Pub Date : 2013-01-01
France Carrier
{"title":"Chromatin Modulation by Histone Deacetylase Inhibitors: Impact on Cellular Sensitivity to Ionizing Radiation.","authors":"France Carrier","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>It is well established that cells are more sensitive to ionizing radiation during the G<sub>2</sub>/M phase of the cell cycle when their chromatin is highly compacted. However, highly compacted chromatin is less susceptible to DNA Double Strand Breaks (DSBs) than relaxed chromatin. Therefore, it is now becoming apparent that it is the cell capacity to repair its damaged DNA and refold its chromatin into its original compacted status that primarily affects the overall cellular sensitivity to ionizing radiation. The Histone Deacetylase Inhibitors (HDACIs) are a new class of anticancer agents that relax chromatin structure by increasing the levels of histone acetylation. The effect of HDACIs on normal and cancer cells sensitivity to ionizing radiation differs. Reports have indicated that HDACIs can protect normal cells while simultaneously sensitize cancer cells to ionizing radiation. This difference may stem from the individual characteristic of the normal and cancer cells chromatin structure. This review discusses this possibility and addresses the role of HDACIs in radiation therapy.</p>","PeriodicalId":18748,"journal":{"name":"Molecular and cellular pharmacology","volume":"5 1","pages":"51-59"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955893/pdf/nihms553411.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and cellular pharmacology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is well established that cells are more sensitive to ionizing radiation during the G2/M phase of the cell cycle when their chromatin is highly compacted. However, highly compacted chromatin is less susceptible to DNA Double Strand Breaks (DSBs) than relaxed chromatin. Therefore, it is now becoming apparent that it is the cell capacity to repair its damaged DNA and refold its chromatin into its original compacted status that primarily affects the overall cellular sensitivity to ionizing radiation. The Histone Deacetylase Inhibitors (HDACIs) are a new class of anticancer agents that relax chromatin structure by increasing the levels of histone acetylation. The effect of HDACIs on normal and cancer cells sensitivity to ionizing radiation differs. Reports have indicated that HDACIs can protect normal cells while simultaneously sensitize cancer cells to ionizing radiation. This difference may stem from the individual characteristic of the normal and cancer cells chromatin structure. This review discusses this possibility and addresses the role of HDACIs in radiation therapy.

Abstract Image

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
组蛋白去乙酰化酶抑制剂对染色质的调节:对电离辐射细胞敏感性的影响。
在细胞周期的G2/M期,当细胞的染色质高度致密时,细胞对电离辐射更敏感。然而,高度致密的染色质比松弛的染色质更不容易受到DNA双链断裂(DSBs)的影响。因此,现在很明显,细胞修复其受损DNA并将其染色质重新折叠到其原始紧实状态的能力主要影响细胞对电离辐射的整体敏感性。组蛋白去乙酰化酶抑制剂(HDACIs)是一类新的抗癌药物,通过增加组蛋白乙酰化水平来放松染色质结构。HDACIs对正常细胞和癌细胞对电离辐射敏感性的影响是不同的。有报道表明,HDACIs可以保护正常细胞,同时使癌细胞对电离辐射敏感。这种差异可能源于正常细胞和癌细胞染色质结构的个体特征。这篇综述讨论了这种可能性,并讨论了HDACIs在放射治疗中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
Sacituzumab govitecan for hormone receptor-positive and triple-negative breast cancers. Protein Kinase D: A Potential Therapeutic Target in Prostate Cancer. RNA-binding Protein, GADD45-alpha, p27Kip1, p53 and Genotoxic Stress Response in Relation to Chemoresistance in Cancer. mTOR Inhibitors at a Glance. Curcumin-encapsulating Nanogels as an Effective Anticancer Formulation for Intracellular Uptake.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1