{"title":"Protein Kinase D: A Potential Therapeutic Target in Prostate Cancer.","authors":"Adhiraj Roy, Q Jane Wang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Protein kinase D (PKD) belongs to a family of serine/threonine kinases in the calcium/calmodulin-dependent kinase superfamily. It modulates a number of signal transduction pathways involved in regulation of cell proliferation, survival, migration, angiogenesis, regulation of gene expression, and protein/membrane trafficking, mediated by variety of stimuli such as growth factors, hormones, and cellular stresses. Although its role in cancer progression remains elusive, current literature supports a potential tumor promoting function of the selective PKD isoforms in prostate cancer, making them promising therapeutic targets for cancer treatment.</p>","PeriodicalId":18748,"journal":{"name":"Molecular and cellular pharmacology","volume":"9 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8580385/pdf/nihms-1067420.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and cellular pharmacology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Protein kinase D (PKD) belongs to a family of serine/threonine kinases in the calcium/calmodulin-dependent kinase superfamily. It modulates a number of signal transduction pathways involved in regulation of cell proliferation, survival, migration, angiogenesis, regulation of gene expression, and protein/membrane trafficking, mediated by variety of stimuli such as growth factors, hormones, and cellular stresses. Although its role in cancer progression remains elusive, current literature supports a potential tumor promoting function of the selective PKD isoforms in prostate cancer, making them promising therapeutic targets for cancer treatment.