Rose Willett, Irina Pokrovskaya, Tetyana Kudlyk, Vladimir Lupashin
{"title":"Multipronged interaction of the COG complex with intracellular membranes.","authors":"Rose Willett, Irina Pokrovskaya, Tetyana Kudlyk, Vladimir Lupashin","doi":"10.4161/cl.27888","DOIUrl":null,"url":null,"abstract":"<p><p>The conserved oligomeric Golgi complex is a peripheral membrane protein complex that orchestrates the tethering and fusion of intra-Golgi transport carriers with Golgi membranes. In this study we have investigated the membrane attachment of the COG complex and it's on/off dynamic on Golgi membranes. Several complimentary approaches including knock-sideways depletion, FRAP, and FLIP revealed that assembled COG complex is not diffusing from Golgi periphery in live HeLa cells. Moreover, COG subunits remained membrane-associated even in COG4 and COG7 depleted cells when Golgi architecture was severely affected. Overexpression of myc-tagged COG sub-complexes revealed that different membrane-associated COG partners including β-COP, p115 and SNARE STX5 preferentially bind to different COG assemblies, indicating that COG subunits interact with Golgi membranes in a multipronged fashion.</p>","PeriodicalId":72547,"journal":{"name":"Cellular logistics","volume":"4 1","pages":"e27888"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/cl.27888","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/cl.27888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/2/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
The conserved oligomeric Golgi complex is a peripheral membrane protein complex that orchestrates the tethering and fusion of intra-Golgi transport carriers with Golgi membranes. In this study we have investigated the membrane attachment of the COG complex and it's on/off dynamic on Golgi membranes. Several complimentary approaches including knock-sideways depletion, FRAP, and FLIP revealed that assembled COG complex is not diffusing from Golgi periphery in live HeLa cells. Moreover, COG subunits remained membrane-associated even in COG4 and COG7 depleted cells when Golgi architecture was severely affected. Overexpression of myc-tagged COG sub-complexes revealed that different membrane-associated COG partners including β-COP, p115 and SNARE STX5 preferentially bind to different COG assemblies, indicating that COG subunits interact with Golgi membranes in a multipronged fashion.