{"title":"Vps34 and the Armus/TBC-2 Rab GAPs: Putting the brakes on the endosomal Rab5 and Rab7 GTPases.","authors":"Fiona Law, Christian E Rocheleau","doi":"10.1080/21592799.2017.1403530","DOIUrl":null,"url":null,"abstract":"<p><p>Rab5 and Rab7 GTPases are key regulators of endosome maturation and lysosome fusion. They activate the class III phosphoinositide 3-kinase (PI3K) Vps34 to generate pools of phosphatidylinositol-3 phosphate [PI(3)P] on endosomes. Together PI(3)P and the GTP-bound Rabs coordinate the recruitment of endosomal regulators to drive early to late endosome maturation and ultimately lysosome fusion. Counterintuitively, loss of Vps34 results in enlarged endosomes, like those seen from expressing activated Rab GTPases. Two recent papers in the <i>Journal of Cell Science</i>, Jaber <i>et al.</i>, 2016 and Law, Seo <i>et al</i>., 2017, demonstrate that a function of Vps34 is to inactive the Rab5 and Rab7 GTPases via recruitment of the TBC1D2 family of Rab GTPase Activating Proteins (GAPs).</p>","PeriodicalId":72547,"journal":{"name":"Cellular logistics","volume":"7 4","pages":"e1403530"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21592799.2017.1403530","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21592799.2017.1403530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Rab5 and Rab7 GTPases are key regulators of endosome maturation and lysosome fusion. They activate the class III phosphoinositide 3-kinase (PI3K) Vps34 to generate pools of phosphatidylinositol-3 phosphate [PI(3)P] on endosomes. Together PI(3)P and the GTP-bound Rabs coordinate the recruitment of endosomal regulators to drive early to late endosome maturation and ultimately lysosome fusion. Counterintuitively, loss of Vps34 results in enlarged endosomes, like those seen from expressing activated Rab GTPases. Two recent papers in the Journal of Cell Science, Jaber et al., 2016 and Law, Seo et al., 2017, demonstrate that a function of Vps34 is to inactive the Rab5 and Rab7 GTPases via recruitment of the TBC1D2 family of Rab GTPase Activating Proteins (GAPs).
Rab5和Rab7 gtpase是内核体成熟和溶酶体融合的关键调控因子。它们激活III类磷酸肌醇3-激酶(PI3K) Vps34,在核内体上产生磷脂酰肌醇-3磷酸[PI(3)P]池。PI(3)P和gtp结合的Rabs共同协调内体调节因子的募集,推动内体早到晚成熟并最终溶酶体融合。与直觉相反,Vps34的缺失导致内体增大,就像表达活化的Rab gtpase所看到的那样。最近发表在《细胞科学杂志》(Journal of Cell Science)上的两篇论文(Jaber et al., 2016和Law, Seo et al., 2017)表明,Vps34的一个功能是通过募集Rab5和Rab7 GTPase激活蛋白(GAPs)的TBC1D2家族来失活Rab5和Rab7 GTPase。