Local Histograms for Classifying H&E Stained Tissues.

M L Massar, R Bhagavatula, M Fickus, J Kovačević
{"title":"Local Histograms for Classifying H&E Stained Tissues.","authors":"M L Massar,&nbsp;R Bhagavatula,&nbsp;M Fickus,&nbsp;J Kovačević","doi":"10.1007/978-3-642-14998-6_89","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a rigorous mathematical theory for the analysis of local histograms, and consider the appropriateness of their use in the automated classification of textures commonly encountered in images of H&E stained tissues. We first discuss some of the many image features that pathologists indicate they use when classifying tissues, focusing on simple, locally-defined features that essentially involve pixel counting: the number of cells in a region of given size, the size of the nuclei within these cells, and the distribution of color within both. We then introduce a probabilistic, occlusion-based model for textures that exhibit these features, in particular demonstrating how certain tissue-similar textures can be built up from simpler ones. After considering the basic notions and properties of local histogram transforms, we then formally demonstrate that such transforms are natural tools for analyzing the textures produced by our model. In particular, we discuss how local histogram transforms can be used to produce numerical features that, when fed into mainstream classification schemes, mimic the baser aspects of a pathologist's thought process.</p>","PeriodicalId":90297,"journal":{"name":"Proceedings of the ... Southern Biomedical Engineering Conference. Southern Biomedical Engineering Conference","volume":"32 ","pages":"348-352"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022716/pdf/nihms209126.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Southern Biomedical Engineering Conference. Southern Biomedical Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-642-14998-6_89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We introduce a rigorous mathematical theory for the analysis of local histograms, and consider the appropriateness of their use in the automated classification of textures commonly encountered in images of H&E stained tissues. We first discuss some of the many image features that pathologists indicate they use when classifying tissues, focusing on simple, locally-defined features that essentially involve pixel counting: the number of cells in a region of given size, the size of the nuclei within these cells, and the distribution of color within both. We then introduce a probabilistic, occlusion-based model for textures that exhibit these features, in particular demonstrating how certain tissue-similar textures can be built up from simpler ones. After considering the basic notions and properties of local histogram transforms, we then formally demonstrate that such transforms are natural tools for analyzing the textures produced by our model. In particular, we discuss how local histogram transforms can be used to produce numerical features that, when fed into mainstream classification schemes, mimic the baser aspects of a pathologist's thought process.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
H&E染色组织的局部直方图分类。
我们引入了一个严格的数学理论来分析局部直方图,并考虑了在H&E染色组织图像中常见的纹理自动分类中使用它们的适当性。我们首先讨论了病理学家指出他们在组织分类时使用的许多图像特征,重点关注简单的、局部定义的特征,这些特征本质上涉及像素计数:给定大小区域内的细胞数量、这些细胞内细胞核的大小以及两者内颜色的分布。然后,我们引入了一个基于遮挡的概率模型,用于展示这些特征的纹理,特别是演示如何从更简单的纹理构建某些组织相似的纹理。在考虑了局部直方图变换的基本概念和性质之后,我们正式证明了这种变换是分析我们模型产生的纹理的自然工具。特别是,我们讨论了如何使用局部直方图变换来产生数字特征,当输入主流分类方案时,模拟病理学家思维过程的基本方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classifier Performance in Primary Somatosensory Cortex Towards Implementation of a Reinforcement Learning Based Brain Machine Interface. Pilot Study for Grip Force Prediction Using Neural Signals from Different Brain Regions. Rapid Prototyping of a Smart Device-based Wireless Reflectance Photoplethysmograph. Local Histograms for Classifying H&E Stained Tissues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1