{"title":"Kinesin-2 mediates apical endosome transport during epithelial lumen formation.","authors":"Dongying Li, E Wolfgang Kuehn, Rytis Prekeris","doi":"10.4161/cl.28928","DOIUrl":null,"url":null,"abstract":"<p><p>Apical lumen formation is a key step during epithelial morphogenesis of tubular organs. Appropriate transport and targeting of apical proteins to the apical membrane initiation site (AMIS) plays a crucial role in establishing a solitary, central lumen. FIP5, a Rab11-interacting protein, is an important regulator that directs apical endosome trafficking along microtubules toward the AMIS during cytokinesis. However, it is unknown which molecular motor(s) transports FIP5-positive apical endosomes during lumen initiation, and how this process is regulated. In this study, we demonstrate that the interaction of FIP5 with the microtubule motor, Kinesin-2, is required for the movement of FIP5-endosomes and delivery of these endosomes from centrosomes to the cleavage furrow during apical lumen initiation. Loss of Kinesin-2 disrupts targeting of apical proteins to the AMIS and results in multiple lumen formation in MDCK cysts. Our data provide more details to the molecular mechanism of FIP5-dependent apical trafficking during apical lumen formation.</p>","PeriodicalId":72547,"journal":{"name":"Cellular logistics","volume":"4 1","pages":"e28928"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/cl.28928","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/cl.28928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/5/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
Apical lumen formation is a key step during epithelial morphogenesis of tubular organs. Appropriate transport and targeting of apical proteins to the apical membrane initiation site (AMIS) plays a crucial role in establishing a solitary, central lumen. FIP5, a Rab11-interacting protein, is an important regulator that directs apical endosome trafficking along microtubules toward the AMIS during cytokinesis. However, it is unknown which molecular motor(s) transports FIP5-positive apical endosomes during lumen initiation, and how this process is regulated. In this study, we demonstrate that the interaction of FIP5 with the microtubule motor, Kinesin-2, is required for the movement of FIP5-endosomes and delivery of these endosomes from centrosomes to the cleavage furrow during apical lumen initiation. Loss of Kinesin-2 disrupts targeting of apical proteins to the AMIS and results in multiple lumen formation in MDCK cysts. Our data provide more details to the molecular mechanism of FIP5-dependent apical trafficking during apical lumen formation.