Electrochemical study and recovery of Pb using 1:2 choline chloride/urea deep eutectic solvent: A variety of Pb species PbSO4, PbO2, and PbO exhibits the analogous thermodynamic behavior
{"title":"Electrochemical study and recovery of Pb using 1:2 choline chloride/urea deep eutectic solvent: A variety of Pb species PbSO4, PbO2, and PbO exhibits the analogous thermodynamic behavior","authors":"Yu-Shun Liao , Po-Yu Chen , I-Wen Sun","doi":"10.1016/j.electacta.2016.08.053","DOIUrl":null,"url":null,"abstract":"<div><p>Water-insoluble PbSO<sub>4</sub>, PbO<sub>2</sub><span>, and PbO are fairly soluble in choline chloride/urea deep eutectic solvent (ChCl/urea DES) in 1:2 molar ratio. Very interestingly, solution prepared from PbO</span><sub>2</sub> exhibits the almost identical electrochemical behavior as those from PbSO<sub>4</sub><span><span> and PbO, indicating that Pb(II) is formed in the DES regardless of what Pb compound is introduced. The electrochemical reduction of the Pb(II) species is determined as an irreversible process, and involves the three-dimensional (3D) instantaneous nucleation with diffusion-controlled growth. From the dependence of the </span>diffusion coefficient<span> on temperature, the activation energy for diffusion of PbSO</span></span><sub>4</sub> and PbO<sub>2</sub> is determined to be 33.7 and 34.1<!--> <!-->kJ<!--> <!-->mol<sup>−1</sup><span>, respectively. Electrodeposition<span> of Pb was achieved potentiostatically and galvanostatically. The surface morphology of Pb deposits significantly depends on the applied potential and current. The coulombic efficiency of Pb electrodeposition is higher than 90%. Electrodeposition of Pb from a wet DES containing a mixture of three different Pb sources is also investigated. The XRD analysis confirmed that the electrodeposits consisted of metallic Pb.</span></span></p></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"214 ","pages":"Pages 265-275"},"PeriodicalIF":5.6000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.electacta.2016.08.053","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468616317637","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 32
Abstract
Water-insoluble PbSO4, PbO2, and PbO are fairly soluble in choline chloride/urea deep eutectic solvent (ChCl/urea DES) in 1:2 molar ratio. Very interestingly, solution prepared from PbO2 exhibits the almost identical electrochemical behavior as those from PbSO4 and PbO, indicating that Pb(II) is formed in the DES regardless of what Pb compound is introduced. The electrochemical reduction of the Pb(II) species is determined as an irreversible process, and involves the three-dimensional (3D) instantaneous nucleation with diffusion-controlled growth. From the dependence of the diffusion coefficient on temperature, the activation energy for diffusion of PbSO4 and PbO2 is determined to be 33.7 and 34.1 kJ mol−1, respectively. Electrodeposition of Pb was achieved potentiostatically and galvanostatically. The surface morphology of Pb deposits significantly depends on the applied potential and current. The coulombic efficiency of Pb electrodeposition is higher than 90%. Electrodeposition of Pb from a wet DES containing a mixture of three different Pb sources is also investigated. The XRD analysis confirmed that the electrodeposits consisted of metallic Pb.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.