Level Sets for Retinal Vasculature Segmentation Using Seeds from Ridges and Edges from Phase Maps.

Bekir Dizdaroğlu, Esra Ataer-Cansizoglu, Jayashree Kalpathy-Cramer, Katie Keck, Michael F Chiang, Deniz Erdogmus
{"title":"Level Sets for Retinal Vasculature Segmentation Using Seeds from Ridges and Edges from Phase Maps.","authors":"Bekir Dizdaroğlu,&nbsp;Esra Ataer-Cansizoglu,&nbsp;Jayashree Kalpathy-Cramer,&nbsp;Katie Keck,&nbsp;Michael F Chiang,&nbsp;Deniz Erdogmus","doi":"10.1109/MLSP.2012.6349730","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we present a novel modification to level set based automatic retinal vasculature segmentation approaches. The method introduces ridge sample extraction for sampling the vasculature centerline and phase map based edge detection for accurate region boundary detection. Segmenting the vasculature in fundus images has been generally challenging for level set methods employing classical edge-detection methodologies. Furthermore, initialization with seed points determined by sampling vessel centerlines using ridge identification makes the method completely automated. The resulting algorithm is able to segment vasculature in fundus imagery accurately and automatically. Quantitative results supplemented with visual ones support this observation. The methodology could be applied to the broader class of vessel segmentation problems encountered in medical image analytics.</p>","PeriodicalId":73290,"journal":{"name":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","volume":" ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/MLSP.2012.6349730","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

In this paper, we present a novel modification to level set based automatic retinal vasculature segmentation approaches. The method introduces ridge sample extraction for sampling the vasculature centerline and phase map based edge detection for accurate region boundary detection. Segmenting the vasculature in fundus images has been generally challenging for level set methods employing classical edge-detection methodologies. Furthermore, initialization with seed points determined by sampling vessel centerlines using ridge identification makes the method completely automated. The resulting algorithm is able to segment vasculature in fundus imagery accurately and automatically. Quantitative results supplemented with visual ones support this observation. The methodology could be applied to the broader class of vessel segmentation problems encountered in medical image analytics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相位图脊和边缘种子的视网膜血管分割水平集。
本文提出了一种新的基于水平集的视网膜血管自动分割方法。该方法采用脊样提取方法对血管中心线进行采样,采用基于相位图的边缘检测方法对区域边界进行精确检测。对于使用经典边缘检测方法的水平集方法来说,在眼底图像中分割血管系统通常是具有挑战性的。此外,使用脊线识别的采样容器中心线确定种子点的初始化使该方法完全自动化。该算法能够准确、自动地分割眼底图像中的血管。定量结果加上视觉结果支持这一观察结果。该方法可以应用于医学图像分析中遇到的更广泛的血管分割问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DATA-DRIVEN LEARNING OF GEOMETRIC SCATTERING MODULES FOR GNNS. CONVOLUTIONAL RECURRENT NEURAL NETWORK BASED DIRECTION OF ARRIVAL ESTIMATION METHOD USING TWO MICROPHONES FOR HEARING STUDIES. LEARNING GENERAL TRANSFORMATIONS OF DATA FOR OUT-OF-SAMPLE EXTENSIONS. Statistical modelling and inference Probabilistic graphical models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1