Flap endonuclease of bacteriophage T7: Possible roles in RNA primer removal, recombination and host DNA breakdown.

Bacteriophage Pub Date : 2014-03-11 eCollection Date: 2014-01-01 DOI:10.4161/bact.28507
Hitoshi Mitsunobu, Bin Zhu, Seung-Joo Lee, Stanley Tabor, Charles C Richardson
{"title":"Flap endonuclease of bacteriophage T7: Possible roles in RNA primer removal, recombination and host DNA breakdown.","authors":"Hitoshi Mitsunobu,&nbsp;Bin Zhu,&nbsp;Seung-Joo Lee,&nbsp;Stanley Tabor,&nbsp;Charles C Richardson","doi":"10.4161/bact.28507","DOIUrl":null,"url":null,"abstract":"<p><p>Gene 6 protein of bacteriophage T7 has 5'-3'-exonuclease activity specific for duplex DNA. We have found that gene 6 protein also has flap endonuclease activity. The flap endonuclease activity is considerably weaker than the exonuclease activity. Unlike the human homolog of gene 6 protein, the flap endonuclease activity of gene 6 protein is dependent on the length of the 5'-flap. This dependency of activity on the length of the 5'-flap may result from the structured helical gateway region of gene 6 protein which differs from that of human flap endonuclease 1. The flap endonuclease activity provides a mechanism by which RNA-terminated Okazaki fragments, displaced by the lagging strand DNA polymerase, are processed. 3'-extensions generated during degradation of duplex DNA by the exonuclease activity of gene 6 protein are inhibitory to further degradation of the 5'-terminus by the exonuclease activity of gene 6 protein. The single-stranded DNA binding protein of T7 overcomes this inhibition.</p>","PeriodicalId":8686,"journal":{"name":"Bacteriophage","volume":"4 ","pages":"e28507"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/bact.28507","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bacteriophage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/bact.28507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Gene 6 protein of bacteriophage T7 has 5'-3'-exonuclease activity specific for duplex DNA. We have found that gene 6 protein also has flap endonuclease activity. The flap endonuclease activity is considerably weaker than the exonuclease activity. Unlike the human homolog of gene 6 protein, the flap endonuclease activity of gene 6 protein is dependent on the length of the 5'-flap. This dependency of activity on the length of the 5'-flap may result from the structured helical gateway region of gene 6 protein which differs from that of human flap endonuclease 1. The flap endonuclease activity provides a mechanism by which RNA-terminated Okazaki fragments, displaced by the lagging strand DNA polymerase, are processed. 3'-extensions generated during degradation of duplex DNA by the exonuclease activity of gene 6 protein are inhibitory to further degradation of the 5'-terminus by the exonuclease activity of gene 6 protein. The single-stranded DNA binding protein of T7 overcomes this inhibition.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
噬菌体T7的皮瓣内切酶:在RNA引物去除、重组和宿主DNA分解中的可能作用。
噬菌体T7基因6蛋白具有5'-3'-双链DNA特异性外切酶活性。我们发现基因6蛋白也具有皮瓣内切酶活性。皮瓣内切酶活性明显弱于外切酶活性。与基因6蛋白的人类同源物不同,基因6蛋白的皮瓣内切酶活性取决于5'-皮瓣的长度。这种依赖于5'-皮瓣长度的活性可能是由于基因6蛋白的结构螺旋通道区不同于人皮瓣内切酶1。皮瓣内切酶活性提供了一种机制,rna终止的冈崎片段,由后链DNA聚合酶取代,加工。基因6蛋白的核酸外切酶活性降解双链DNA时产生的3'端延伸抑制基因6蛋白的核酸外切酶活性进一步降解5'端。T7的单链DNA结合蛋白克服了这种抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Testing a proposed paradigm shift in analysis of phage DNA packaging Fecal microbiota transplantation to fight Clostridium difficile infections and other intestinal diseases Félix Hubert d'Herelle (1873–1949): History of a scientific mind My scientific life Structural proteins of Enterococcus faecalis bacteriophage ϕEf11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1