Joshua H Bacon, Ilya Kister, Tamar E Bacon, Eliana Pasternak, Yael Strauchler, Joseph Herbert
{"title":"Sound Lateralization Test Distinguishes Unimpaired MS Patients from Healthy Controls.","authors":"Joshua H Bacon, Ilya Kister, Tamar E Bacon, Eliana Pasternak, Yael Strauchler, Joseph Herbert","doi":"10.1155/2014/462043","DOIUrl":null,"url":null,"abstract":"<p><p>There is an urgent need to develop a practical and reliable clinical measure of disease progression in early and mild MS. We hypothesized that a test of sound lateralization, which is exquisitely sensitive to transmission delays in auditory brainstem, could be more useful for detecting processing speed deficits in mildly impaired MS subjects than standard cognitive tasks. Objective. To develop a practical test of sound lateralization for the clinic and to compare performance of MS subjects with variable disability and healthy subjects on Sound Lateralization Test (SLT) and two speed-of-processing tasks. Design. 42 healthy controls and 90 subjects with clinically definite MS, divided into no, mild, and moderate disability strata, were administered the Symbol Digit Modalities Test (SDMT), and 3-second Paced Auditory Serial Addition Test (PASAT). Results. All of the tests showed an overall difference in performance between controls and the three MS groups, but only the SLT measured a significant difference between controls and the no disability group. Conclusion. SLT is rapidly applied, technically simple, and superior to standard processing speed tests for discriminating between healthy controls and nondisabled MS subjects. SLT should be investigated as an outcome measure in early-phase trials and for monitoring early disease progression in the clinic. </p>","PeriodicalId":46096,"journal":{"name":"Multiple Sclerosis International","volume":"2014 ","pages":"462043"},"PeriodicalIF":2.2000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/462043","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiple Sclerosis International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/462043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/7/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
There is an urgent need to develop a practical and reliable clinical measure of disease progression in early and mild MS. We hypothesized that a test of sound lateralization, which is exquisitely sensitive to transmission delays in auditory brainstem, could be more useful for detecting processing speed deficits in mildly impaired MS subjects than standard cognitive tasks. Objective. To develop a practical test of sound lateralization for the clinic and to compare performance of MS subjects with variable disability and healthy subjects on Sound Lateralization Test (SLT) and two speed-of-processing tasks. Design. 42 healthy controls and 90 subjects with clinically definite MS, divided into no, mild, and moderate disability strata, were administered the Symbol Digit Modalities Test (SDMT), and 3-second Paced Auditory Serial Addition Test (PASAT). Results. All of the tests showed an overall difference in performance between controls and the three MS groups, but only the SLT measured a significant difference between controls and the no disability group. Conclusion. SLT is rapidly applied, technically simple, and superior to standard processing speed tests for discriminating between healthy controls and nondisabled MS subjects. SLT should be investigated as an outcome measure in early-phase trials and for monitoring early disease progression in the clinic.
期刊介绍:
Multiple Sclerosis International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies related to all aspects of multiple sclerosis, including clinical neurology, neuroimaging, neuropathology, therapeutics, genetics, neuroimmunology, biomarkers, psychology and neurorehabilitation.