Mechanistic calendar aging model for lithium-ion batteries

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2023-06-07 DOI:10.1016/j.jpowsour.2023.233208
Alexander Karger , Julius Schmitt , Cedric Kirst , Jan P. Singer , Leo Wildfeuer , Andreas Jossen
{"title":"Mechanistic calendar aging model for lithium-ion batteries","authors":"Alexander Karger ,&nbsp;Julius Schmitt ,&nbsp;Cedric Kirst ,&nbsp;Jan P. Singer ,&nbsp;Leo Wildfeuer ,&nbsp;Andreas Jossen","doi":"10.1016/j.jpowsour.2023.233208","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this work we present a novel mechanistic calendar aging model for a commercial lithium-ion cell with NCA cathode and silicon-graphite anode. The mechanistic calendar aging model is a semi-empirical aging model that is parameterized on component states of health, instead of capacity. Three component states of health are derived from the degradation modes, which are calculated by fitting the electrode potential curves at every check-up measurement. The aging data used for model parameterization spans </span><span><math><mrow><mtext>672</mtext><mspace></mspace><mtext>days</mtext></mrow></math></span> of storage at 27 different combinations of ambient temperature (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>amb</mi></mrow></msub></math></span><span>) and state of charge (</span><span><math><mi>SOC</mi></math></span><span><span>). To compensate for the influence of the check-up measurements on cell degradation, the aging data is pre-processed in two steps, considering immediate degradation caused by the check-up cycles and accelerated degradation during subsequent storage. The loss of active anode material<span> is negligible during check-up-compensated calendar aging. For loss of lithium inventory and loss of active cathode material, Tafel and </span></span>Arrhenius terms are successfully used to model </span><span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>amb</mi></mrow></msub></math></span> and <span><math><mi>SOC</mi></math></span> dependence. The mechanistic calendar aging model predicts the capacity with <span><math><mrow><mo>&lt;</mo><mtext>1</mtext><mspace></mspace><mtext>%</mtext></mrow></math></span> mean deviation for 7 different storage conditions after <span><math><mrow><mtext>672</mtext><mspace></mspace><mtext>days</mtext></mrow></math></span> without check-ups. The check-up compensation increases predicted lifetime by <span><math><mrow><mo>&gt;</mo><mtext>150</mtext><mspace></mspace><mtext>%</mtext></mrow></math></span> for exemplary storage at <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>amb</mi></mrow></msub><mo>=</mo><mtext>60</mtext><mspace></mspace><mtext>°C</mtext></mrow></math></span> and <span><math><mrow><mi>SOC</mi><mo>=</mo><mtext>50</mtext><mspace></mspace><mtext>%</mtext></mrow></math></span>.</p></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"578 ","pages":"Article 233208"},"PeriodicalIF":8.1000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775323005839","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 5

Abstract

In this work we present a novel mechanistic calendar aging model for a commercial lithium-ion cell with NCA cathode and silicon-graphite anode. The mechanistic calendar aging model is a semi-empirical aging model that is parameterized on component states of health, instead of capacity. Three component states of health are derived from the degradation modes, which are calculated by fitting the electrode potential curves at every check-up measurement. The aging data used for model parameterization spans 672days of storage at 27 different combinations of ambient temperature (Tamb) and state of charge (SOC). To compensate for the influence of the check-up measurements on cell degradation, the aging data is pre-processed in two steps, considering immediate degradation caused by the check-up cycles and accelerated degradation during subsequent storage. The loss of active anode material is negligible during check-up-compensated calendar aging. For loss of lithium inventory and loss of active cathode material, Tafel and Arrhenius terms are successfully used to model Tamb and SOC dependence. The mechanistic calendar aging model predicts the capacity with <1% mean deviation for 7 different storage conditions after 672days without check-ups. The check-up compensation increases predicted lifetime by >150% for exemplary storage at Tamb=60°C and SOC=50%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锂离子电池的机械日历老化模型
在这项工作中,我们提出了一种新的机械日历老化模型,用于具有NCA阴极和硅-石墨阳极的商用锂离子电池。机械日历老化模型是一种半经验老化模型,它以健康的组成状态为参数,而不是以能力为参数。通过拟合每次检测时的电极电位曲线,从退化模式推导出三种组分的健康状态。用于模型参数化的老化数据在27种不同的环境温度(Tamb)和荷电状态(SOC)组合下存储了672天。为了补偿检查测量对细胞降解的影响,考虑到检查周期引起的立即降解和随后存储过程中的加速降解,对老化数据进行了两步预处理。在检查补偿日历老化过程中,活性阳极材料的损耗可以忽略不计。对于锂库存损失和活性正极材料损失,Tafel和Arrhenius术语成功地用于模拟Tamb和SOC依赖。机械日历老化模型预测了672天不检查后7种不同储存条件下的容量,平均偏差为<1%。在Tamb=60°C和SOC=50%的示例存储条件下,检查补偿将预测寿命提高了150%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
Jackfruit waste derived oxygen-self-doped porous carbon for aqueous Zn-ion supercapacitors A free-standing sulfide polyacrylonitrile/reduced graphene oxide film cathode with nacre-like architecture for high-performance lithium-sulfur batteries Enhanced chemical stability and H+/V4+ selectivity of microporous sulfonated polyimide via a triptycene-based crosslinker Real-vehicle experimental validation of a predictive energy management strategy for fuel cell vehicles Heuristic method for electric vehicle charging in a Spanish microgrid: Leveraging renewable energy surplus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1