Data Anonymization that Leads to the Most Accurate Estimates of Statistical Characteristics: Fuzzy-Motivated Approach.

G Xiang, S Ferson, L Ginzburg, L Longpré, E Mayorga, O Kosheleva
{"title":"Data Anonymization that Leads to the Most Accurate Estimates of Statistical Characteristics: Fuzzy-Motivated Approach.","authors":"G Xiang,&nbsp;S Ferson,&nbsp;L Ginzburg,&nbsp;L Longpré,&nbsp;E Mayorga,&nbsp;O Kosheleva","doi":"10.1109/IFSA-NAFIPS.2013.6608471","DOIUrl":null,"url":null,"abstract":"<p><p>To preserve privacy, the original data points (with exact values) are replaced by boxes containing each (inaccessible) data point. This privacy-motivated uncertainty leads to uncertainty in the statistical characteristics computed based on this data. In a previous paper, we described how to minimize this uncertainty under the assumption that we use the same standard statistical estimates for the desired characteristics. In this paper, we show that we can further decrease the resulting uncertainty if we allow fuzzy-motivated <i>weighted</i> estimates, and we explain how to optimally select the corresponding weights.</p>","PeriodicalId":90701,"journal":{"name":"Proceedings. IFSA World Congress","volume":" ","pages":"611-616"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/IFSA-NAFIPS.2013.6608471","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IFSA World Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFSA-NAFIPS.2013.6608471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To preserve privacy, the original data points (with exact values) are replaced by boxes containing each (inaccessible) data point. This privacy-motivated uncertainty leads to uncertainty in the statistical characteristics computed based on this data. In a previous paper, we described how to minimize this uncertainty under the assumption that we use the same standard statistical estimates for the desired characteristics. In this paper, we show that we can further decrease the resulting uncertainty if we allow fuzzy-motivated weighted estimates, and we explain how to optimally select the corresponding weights.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
导致统计特征最准确估计的数据匿名化:模糊动机方法。
为了保护隐私,原始数据点(具有精确值)被包含每个(不可访问的)数据点的框所取代。这种隐私驱动的不确定性导致基于该数据计算的统计特征存在不确定性。在之前的一篇论文中,我们描述了如何在假设我们对期望的特性使用相同的标准统计估计的情况下最小化这种不确定性。在本文中,我们表明,如果我们允许模糊动机加权估计,我们可以进一步降低结果的不确定性,并解释了如何最佳地选择相应的权重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data Anonymization that Leads to the Most Accurate Estimates of Statistical Characteristics: Fuzzy-Motivated Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1