The surface functional modification of Ti3C2Tx MXene by phosphorus doping and its application in quasi-solid state flexible supercapacitor

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Applied Surface Science Pub Date : 2022-12-30 DOI:10.1016/j.apsusc.2022.154817
Xiaochun Wei, Man Cai, Fulin Yuan, Dan Lu, Cong Li, Haifu Huang, Shuaikai Xu, Xianqing Liang, Wenzheng Zhou, Jin Guo
{"title":"The surface functional modification of Ti3C2Tx MXene by phosphorus doping and its application in quasi-solid state flexible supercapacitor","authors":"Xiaochun Wei,&nbsp;Man Cai,&nbsp;Fulin Yuan,&nbsp;Dan Lu,&nbsp;Cong Li,&nbsp;Haifu Huang,&nbsp;Shuaikai Xu,&nbsp;Xianqing Liang,&nbsp;Wenzheng Zhou,&nbsp;Jin Guo","doi":"10.1016/j.apsusc.2022.154817","DOIUrl":null,"url":null,"abstract":"<div><p>The surface modification of MXene by heterogeneous atoms shows great potential in improving the charge storage capacity of MXene. Herein, a strategy of rapid in-situ phosphorus doping at low temperature is demonstrated for preparing functionalized Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-P) using sodium hypophosphate as phosphorus source. The phosphorus doping can increase the layer spacing of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> and yield P<img>O and P<img>C bonds in Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>, resulting in more rapid paths for the migration of electrolyte ions into electrode and more active sites for pseudocapacitance effects. As flexible electrode of supercapacitor, the specific capacitance of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-P reaches as high as 476.9F g<sup>−1</sup> (745.4F cm<sup>−3</sup>), which is far larger than that of the raw Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> (344.4F g<sup>−1</sup>, 438.5F cm<sup>−3</sup>). In addition, a flexible quasi-solid supercapacitor device assembled by Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-P film shows high specific capacitance of 103F g<sup>−1</sup> at 5 mV s<sup>−1</sup>. When the power density is 250 W kg<sup>−1</sup> and 10000 W kg<sup>−1</sup>, the corresponding energy density reaches 15.8 Wh kg<sup>−1</sup> and 6.1 Wh kg<sup>−1</sup>, respectively. Therefore, our work not only reveals the role of P atom doping in improving the structure, composition and electrochemical performance of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>, but provides a method for surface modification and functionalization of MXene materials.</p></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433222023455","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 14

Abstract

The surface modification of MXene by heterogeneous atoms shows great potential in improving the charge storage capacity of MXene. Herein, a strategy of rapid in-situ phosphorus doping at low temperature is demonstrated for preparing functionalized Ti3C2Tx MXene (Ti3C2Tx-P) using sodium hypophosphate as phosphorus source. The phosphorus doping can increase the layer spacing of Ti3C2Tx and yield PO and PC bonds in Ti3C2Tx, resulting in more rapid paths for the migration of electrolyte ions into electrode and more active sites for pseudocapacitance effects. As flexible electrode of supercapacitor, the specific capacitance of Ti3C2Tx-P reaches as high as 476.9F g−1 (745.4F cm−3), which is far larger than that of the raw Ti3C2Tx (344.4F g−1, 438.5F cm−3). In addition, a flexible quasi-solid supercapacitor device assembled by Ti3C2Tx-P film shows high specific capacitance of 103F g−1 at 5 mV s−1. When the power density is 250 W kg−1 and 10000 W kg−1, the corresponding energy density reaches 15.8 Wh kg−1 and 6.1 Wh kg−1, respectively. Therefore, our work not only reveals the role of P atom doping in improving the structure, composition and electrochemical performance of Ti3C2Tx, but provides a method for surface modification and functionalization of MXene materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磷掺杂Ti3C2Tx MXene表面功能改性及其在准固态柔性超级电容器中的应用
异相原子对MXene进行表面改性,对提高MXene的电荷存储能力具有很大的潜力。本文研究了以次磷酸钠为磷源,低温原位快速磷掺杂制备功能化Ti3C2Tx MXene (Ti3C2Tx- p)的方法。磷的掺杂可以增加Ti3C2Tx的层间距,并在Ti3C2Tx中形成PO和PC键,从而使电解质离子向电极的迁移路径更加快速,赝电容效应的活性位点也更多。作为超级电容器的柔性电极,Ti3C2Tx- p的比电容高达476.9F g−1 (745.4F cm−3),远远大于原料Ti3C2Tx的比电容(344.4F g−1,438.5F cm−3)。此外,用Ti3C2Tx-P薄膜组装的柔性准固体超级电容器器件在5 mV s−1下具有103F g−1的高比电容。当功率密度为250w kg−1和10000w kg−1时,对应的能量密度分别为15.8 Wh kg−1和6.1 Wh kg−1。因此,我们的工作不仅揭示了P原子掺杂对改善Ti3C2Tx的结构、组成和电化学性能的作用,而且为MXene材料的表面改性和功能化提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
期刊最新文献
Corrosion inhibitor from nature: Fundamentals of tannic acid inhibition for AA2024 alloy Implementation of a simple functionalisation of graphene (Gii-Sens) in the determination of a suitable linker for use in biocatalytic devices Cerium-regulated Mg3FeO4@biochar activated persulfate to enhance degradation of aqueous tetracycline: The dominant role of cerium Surface modification of ilmenite with sodium persulfate and its effect on flotation performance Mechanisms of nodule formation on Ni-Pt targets during sputtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1