{"title":"Noradrenaline transmission reducing drugs may protect against a broad range of diseases.","authors":"P. J. Fitzgerald","doi":"10.1111/aap.12019","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p><b>1</b> A growing body of evidence suggests that the signalling molecule, noradrenaline (NA), plays a pathophysiological role in a broad range of psychiatric, neurological and peripheral disorders. Both preclinical and clinical data suggest that elevated NA signalling may be involved in the aetiology of major diseases such as depression, Alzheimer's disease and diabetes mellitus. <b>2</b> The molecular pathways by which NA may cause the manifestation of disease remain poorly understood, although they may include G protein-coupled receptor modulation of the Ras/MAP kinase, Stat3 and PI3K pathways, among others. In both individual animals and humans, NA tone may be elevated largely due to genetics, but also because of the exposure to marked psychological stress or trauma, or other environmental factors. <b>3</b> As NA is involved in the ‘fight or flight’ response by the sympathetic nervous system, this transmitter may be elevated in a large number of organisms due to evolutionary selection of enhancing responses to immediate environmental dangers. Likewise, acetylcholine signalling by the parasympathetic (‘rest and digest’) nervous system may be relatively diminished. This putative autonomic imbalance may result in diminished engagement in homeostatic processes, resulting in the emergence and progression of a number of diseases throughout the body. <b>4</b> In this scenario, a large number of individuals may benefit from chronic use of pharmacological agents – such as clonidine, guanfacine, propranolol or prazosin – that diminish NA signalling throughout the body. If so, NA transmission lowering drugs may protect against a wide range of diseases.</p>\n </div>","PeriodicalId":100151,"journal":{"name":"Autonomic and Autacoid Pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/aap.12019","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomic and Autacoid Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/aap.12019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
1 A growing body of evidence suggests that the signalling molecule, noradrenaline (NA), plays a pathophysiological role in a broad range of psychiatric, neurological and peripheral disorders. Both preclinical and clinical data suggest that elevated NA signalling may be involved in the aetiology of major diseases such as depression, Alzheimer's disease and diabetes mellitus. 2 The molecular pathways by which NA may cause the manifestation of disease remain poorly understood, although they may include G protein-coupled receptor modulation of the Ras/MAP kinase, Stat3 and PI3K pathways, among others. In both individual animals and humans, NA tone may be elevated largely due to genetics, but also because of the exposure to marked psychological stress or trauma, or other environmental factors. 3 As NA is involved in the ‘fight or flight’ response by the sympathetic nervous system, this transmitter may be elevated in a large number of organisms due to evolutionary selection of enhancing responses to immediate environmental dangers. Likewise, acetylcholine signalling by the parasympathetic (‘rest and digest’) nervous system may be relatively diminished. This putative autonomic imbalance may result in diminished engagement in homeostatic processes, resulting in the emergence and progression of a number of diseases throughout the body. 4 In this scenario, a large number of individuals may benefit from chronic use of pharmacological agents – such as clonidine, guanfacine, propranolol or prazosin – that diminish NA signalling throughout the body. If so, NA transmission lowering drugs may protect against a wide range of diseases.