Notch signaling in mammalian hair cell regeneration.

Trends in developmental biology Pub Date : 2013-01-01
Amber D Slowik, Olivia Bermingham-McDonogh
{"title":"Notch signaling in mammalian hair cell regeneration.","authors":"Amber D Slowik,&nbsp;Olivia Bermingham-McDonogh","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In the inner ear, Notch signaling has been shown to have two key developmental roles. The first occurs early in otic development and defines the prosensory domains that will develop into the six sensory organs of the inner ear. The second role occurs later in development and establishes the mosaic-like pattern of the mechanosensory hair cells and their surrounding support cells through the more well-characterized process of lateral inhibition. These dual developmental roles have inspired several different strategies to regenerate hair cells in the mature inner ear organs. These strategies include (1) modulation of Notch signaling in inner ear stem cells in order to increase hair cell yield, (2) activation of Notch signaling in order to promote the formation of ectopic sensory regions in normally non-sensory regions within the inner ear, and (3) inhibition of Notch signaling to disrupt lateral inhibition and allow support cells to transdifferentiate into hair cells. In this review, we summarize some of the promising studies that have used these various strategies for hair cell regeneration through modulation of Notch signaling and some of the challenges that remain in developing therapies based on hair cell regeneration.</p>","PeriodicalId":75257,"journal":{"name":"Trends in developmental biology","volume":"7 ","pages":"73-89"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199338/pdf/nihms599613.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in developmental biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the inner ear, Notch signaling has been shown to have two key developmental roles. The first occurs early in otic development and defines the prosensory domains that will develop into the six sensory organs of the inner ear. The second role occurs later in development and establishes the mosaic-like pattern of the mechanosensory hair cells and their surrounding support cells through the more well-characterized process of lateral inhibition. These dual developmental roles have inspired several different strategies to regenerate hair cells in the mature inner ear organs. These strategies include (1) modulation of Notch signaling in inner ear stem cells in order to increase hair cell yield, (2) activation of Notch signaling in order to promote the formation of ectopic sensory regions in normally non-sensory regions within the inner ear, and (3) inhibition of Notch signaling to disrupt lateral inhibition and allow support cells to transdifferentiate into hair cells. In this review, we summarize some of the promising studies that have used these various strategies for hair cell regeneration through modulation of Notch signaling and some of the challenges that remain in developing therapies based on hair cell regeneration.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Notch信号在哺乳动物毛细胞再生中的作用。
在内耳中,Notch信号已被证明具有两个关键的发育作用。第一个发生在耳朵发育早期,并定义了将发展成内耳六个感觉器官的前感觉域。第二个作用发生在发育后期,并通过更有特征的侧抑制过程建立机械感觉毛细胞及其周围支持细胞的马赛克样模式。这些双重发育作用激发了几种不同的策略来再生成熟内耳器官中的毛细胞。这些策略包括(1)调节内耳干细胞中的Notch信号以增加毛细胞产量,(2)激活Notch信号以促进内耳正常非感觉区域异位感觉区域的形成,以及(3)抑制Notch信号以破坏侧向抑制并允许支持细胞转分化为毛细胞。在这篇综述中,我们总结了一些有前途的研究,这些研究利用这些不同的策略通过调节Notch信号来实现毛细胞再生,以及在开发基于毛细胞再生的治疗方法中仍然存在的一些挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Epigenetic modulation of cell fate during pancreas development. Simplifying cell fate map by determining lineage history of core pathway activation during fate specification. Mouse zona pellucida proteins as receptors for binding of sperm to eggs. Developmental effects of in utero metformin exposure. Maternal determinants of gestation length in the rhesus monkey.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1