A High-Performance Cellular Automaton Model of Tumor Growth with Dynamically Growing Domains.

Jan Poleszczuk, Heiko Enderling
{"title":"A High-Performance Cellular Automaton Model of Tumor Growth with Dynamically Growing Domains.","authors":"Jan Poleszczuk, Heiko Enderling","doi":"10.4236/am.2014.51017","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor growth from a single transformed cancer cell up to a clinically apparent mass spans many spatial and temporal orders of magnitude. Implementation of cellular automata simulations of such tumor growth can be straightforward but computing performance often counterbalances simplicity. Computationally convenient simulation times can be achieved by choosing appropriate data structures, memory and cell handling as well as domain setup. We propose a cellular automaton model of tumor growth with a domain that expands dynamically as the tumor population increases. We discuss memory access, data structures and implementation techniques that yield high-performance multi-scale Monte Carlo simulations of tumor growth. We discuss tumor properties that favor the proposed high-performance design and present simulation results of the tumor growth model. We estimate to which parameters the model is the most sensitive, and show that tumor volume depends on a number of parameters in a non-monotonic manner.</p>","PeriodicalId":64940,"journal":{"name":"应用数学(英文)","volume":"5 1","pages":"144-152"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208695/pdf/nihms613995.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用数学(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/am.2014.51017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tumor growth from a single transformed cancer cell up to a clinically apparent mass spans many spatial and temporal orders of magnitude. Implementation of cellular automata simulations of such tumor growth can be straightforward but computing performance often counterbalances simplicity. Computationally convenient simulation times can be achieved by choosing appropriate data structures, memory and cell handling as well as domain setup. We propose a cellular automaton model of tumor growth with a domain that expands dynamically as the tumor population increases. We discuss memory access, data structures and implementation techniques that yield high-performance multi-scale Monte Carlo simulations of tumor growth. We discuss tumor properties that favor the proposed high-performance design and present simulation results of the tumor growth model. We estimate to which parameters the model is the most sensitive, and show that tumor volume depends on a number of parameters in a non-monotonic manner.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有动态生长域的高性能肿瘤生长细胞自动机模型
肿瘤从单个转化癌细胞生长到临床上明显的肿块,跨越了许多空间和时间数量级。对这种肿瘤生长进行细胞自动机模拟可以很简单,但计算性能往往与简单性不相称。通过选择适当的数据结构、内存和细胞处理以及领域设置,可以实现计算方便的模拟时间。我们提出了一种肿瘤生长的细胞自动机模型,其域会随着肿瘤数量的增加而动态扩展。我们讨论了内存访问、数据结构和实现技术,这些技术可产生高性能的肿瘤生长多尺度蒙特卡罗模拟。我们讨论了有利于拟议高性能设计的肿瘤特性,并展示了肿瘤生长模型的仿真结果。我们估计了该模型对哪些参数最为敏感,并表明肿瘤体积以非单调的方式取决于多个参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
1863
期刊最新文献
Determination of Statistical Properties of Microtubule Populations. Fraction of Missing Information (γ) at Different Missing Data Fractions in the 2012 NAMCS Physician Workflow Mail Survey. Determining Sufficient Number of Imputations Using Variance of Imputation Variances: Data from 2012 NAMCS Physician Workflow Mail Survey. Automated Cell Detection and Morphometry on Growth Plate Images of Mouse Bone. The Effect of Ligament Modeling Technique on Knee Joint Kinematics: A Finite Element Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1