Physical exercise ameliorates the reduction of neural stem cell, cell proliferation and neuroblast differentiation in senescent mice induced by D-galactose.
{"title":"Physical exercise ameliorates the reduction of neural stem cell, cell proliferation and neuroblast differentiation in senescent mice induced by D-galactose.","authors":"Sung Min Nam, Jong Whi Kim, Dae Young Yoo, Hee Sun Yim, Dae Won Kim, Jung Hoon Choi, Woosuk Kim, Hyo Young Jung, Moo-Ho Won, In Koo Hwang, Je Kyung Seong, Yeo Sung Yoon","doi":"10.1186/s12868-014-0116-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Aging negatively affects adult hippocampal neurogenesis, and exercise attenuates the age-related reduction in adult hippocampal neurogenesis. In the present study, we used senescent mice induced by D-galactose to examine neural stem cells, cell proliferation, and neuronal differentiation with or without exercise treatment. D-galactose (100 mg/kg) was injected to six-week-old C57BL/6 J mice for 6 weeks to induce the senescent model. During these periods, the animals were placed on a treadmill and acclimated to exercise for 1 week. Then treadmill running was conducted for 1 h/day for 5 consecutive days at 10-12 m/min for 5 weeks.</p><p><strong>Results: </strong>Body weight and food intake did not change significantly after D-galactose administration with/without treadmill exercise, although body weight and food intake was highest after treadmill exercise in adult animals and lowest after treadmill exercise in D-galactose-induced senescent model animals. D-galactose treatment significantly decreased the number of nestin (a neural stem cell marker), Ki67 (a cell proliferation marker), and doublecortin (DCX, a differentiating neuroblast marker) positive cells compared to those in the control group. In contrast, treadmill exercise significantly increased Ki67- and DCX-positive cell numbers in both the vehicle- and D-galactose treated groups. In addition, phosphorylated cAMP-response element binding protein (pCREB) and brain derived neurotrophic factor (BDNF) was significantly decreased in the D-galactose treated group, whereas exercise increased their expression in the subgranular zone of the dentate gyrus in both the vehicle- and D-galactose-treated groups.</p><p><strong>Conclusion: </strong>These results suggest that treadmill exercise attenuates the D-galactose-induced reduction in neural stem cells, cell proliferation, and neuronal differentiation by enhancing the expression of pCREB and BDNF in the dentate gyrus of the hippocampus.</p>","PeriodicalId":9031,"journal":{"name":"BMC Neuroscience","volume":"15 ","pages":"116"},"PeriodicalIF":2.4000,"publicationDate":"2014-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12868-014-0116-4","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12868-014-0116-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 24
Abstract
Background: Aging negatively affects adult hippocampal neurogenesis, and exercise attenuates the age-related reduction in adult hippocampal neurogenesis. In the present study, we used senescent mice induced by D-galactose to examine neural stem cells, cell proliferation, and neuronal differentiation with or without exercise treatment. D-galactose (100 mg/kg) was injected to six-week-old C57BL/6 J mice for 6 weeks to induce the senescent model. During these periods, the animals were placed on a treadmill and acclimated to exercise for 1 week. Then treadmill running was conducted for 1 h/day for 5 consecutive days at 10-12 m/min for 5 weeks.
Results: Body weight and food intake did not change significantly after D-galactose administration with/without treadmill exercise, although body weight and food intake was highest after treadmill exercise in adult animals and lowest after treadmill exercise in D-galactose-induced senescent model animals. D-galactose treatment significantly decreased the number of nestin (a neural stem cell marker), Ki67 (a cell proliferation marker), and doublecortin (DCX, a differentiating neuroblast marker) positive cells compared to those in the control group. In contrast, treadmill exercise significantly increased Ki67- and DCX-positive cell numbers in both the vehicle- and D-galactose treated groups. In addition, phosphorylated cAMP-response element binding protein (pCREB) and brain derived neurotrophic factor (BDNF) was significantly decreased in the D-galactose treated group, whereas exercise increased their expression in the subgranular zone of the dentate gyrus in both the vehicle- and D-galactose-treated groups.
Conclusion: These results suggest that treadmill exercise attenuates the D-galactose-induced reduction in neural stem cells, cell proliferation, and neuronal differentiation by enhancing the expression of pCREB and BDNF in the dentate gyrus of the hippocampus.
期刊介绍:
BMC Neuroscience is an open access, peer-reviewed journal that considers articles on all aspects of neuroscience, welcoming studies that provide insight into the molecular, cellular, developmental, genetic and genomic, systems, network, cognitive and behavioral aspects of nervous system function in both health and disease. Both experimental and theoretical studies are within scope, as are studies that describe methodological approaches to monitoring or manipulating nervous system function.