Simone Rossi, Ricardo Ruiz-Baier, Luca F Pavarino, Alfio Quarteroni
{"title":"Orthotropic active strain models for the numerical simulation of cardiac biomechanics.","authors":"Simone Rossi, Ricardo Ruiz-Baier, Luca F Pavarino, Alfio Quarteroni","doi":"10.1002/cnm.2473","DOIUrl":null,"url":null,"abstract":"<p><p>A model for the active deformation of cardiac tissue considering orthotropic constitutive laws is introduced and studied. In particular, the passive mechanical properties of the myocardium are described by the Holzapfel-Ogden relation, whereas the activation model is based on the concept of active strain. There, an incompatible intermediate configuration is considered, which entails a multiplicative decomposition between active and passive deformation gradients. The underlying Euler-Lagrange equations for minimizing the total energy are written in terms of these deformation factors, where the active part is assumed to depend, at the cell level, on the electrodynamics and on the specific orientation of the cardiomyocytes. The active strain formulation is compared with the classical active stress model from both numerical and modeling perspectives. The well-posedness of the linear system derived from a generic Newton iteration of the original problem is analyzed, and different mechanical activation functions are considered. Taylor-Hood and MINI finite elements are used in the discretization of the overall mechanical problem. The results of several numerical experiments show that the proposed formulation is mathematically consistent and is able to represent the main features of the phenomenon, while allowing savings in computational costs.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"28 6-7","pages":"761-88"},"PeriodicalIF":2.2000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cnm.2473","citationCount":"97","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cnm.2473","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/2/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 97
Abstract
A model for the active deformation of cardiac tissue considering orthotropic constitutive laws is introduced and studied. In particular, the passive mechanical properties of the myocardium are described by the Holzapfel-Ogden relation, whereas the activation model is based on the concept of active strain. There, an incompatible intermediate configuration is considered, which entails a multiplicative decomposition between active and passive deformation gradients. The underlying Euler-Lagrange equations for minimizing the total energy are written in terms of these deformation factors, where the active part is assumed to depend, at the cell level, on the electrodynamics and on the specific orientation of the cardiomyocytes. The active strain formulation is compared with the classical active stress model from both numerical and modeling perspectives. The well-posedness of the linear system derived from a generic Newton iteration of the original problem is analyzed, and different mechanical activation functions are considered. Taylor-Hood and MINI finite elements are used in the discretization of the overall mechanical problem. The results of several numerical experiments show that the proposed formulation is mathematically consistent and is able to represent the main features of the phenomenon, while allowing savings in computational costs.
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.