Flavia Riccardo, Mika Shigematsu, Catherine Chow, C Jason McKnight, Jens Linge, Brian Doherty, Maria Grazia Dente, Silvia Declich, Mike Barker, Philippe Barboza, Laetitia Vaillant, Alastair Donachie, Abla Mawudeku, Michael Blench, Ray Arthur
{"title":"Interfacing a biosurveillance portal and an international network of institutional analysts to detect biological threats.","authors":"Flavia Riccardo, Mika Shigematsu, Catherine Chow, C Jason McKnight, Jens Linge, Brian Doherty, Maria Grazia Dente, Silvia Declich, Mike Barker, Philippe Barboza, Laetitia Vaillant, Alastair Donachie, Abla Mawudeku, Michael Blench, Ray Arthur","doi":"10.1089/bsp.2014.0031","DOIUrl":null,"url":null,"abstract":"<p><p>The Early Alerting and Reporting (EAR) project, launched in 2008, is aimed at improving global early alerting and risk assessment and evaluating the feasibility and opportunity of integrating the analysis of biological, chemical, radionuclear (CBRN), and pandemic influenza threats. At a time when no international collaborations existed in the field of event-based surveillance, EAR's innovative approach involved both epidemic intelligence experts and internet-based biosurveillance system providers in the framework of an international collaboration called the Global Health Security Initiative, which involved the ministries of health of the G7 countries and Mexico, the World Health Organization, and the European Commission. The EAR project pooled data from 7 major internet-based biosurveillance systems onto a common portal that was progressively optimized for biological threat detection under the guidance of epidemic intelligence experts from public health institutions in Canada, the European Centre for Disease Prevention and Control, France, Germany, Italy, Japan, the United Kingdom, and the United States. The group became the first end users of the EAR portal, constituting a network of analysts working with a common standard operating procedure and risk assessment tools on a rotation basis to constantly screen and assess public information on the web for events that could suggest an intentional release of biological agents. Following the first 2-year pilot phase, the EAR project was tested in its capacity to monitor biological threats, proving that its working model was feasible and demonstrating the high commitment of the countries and international institutions involved. During the testing period, analysts using the EAR platform did not miss intentional events of a biological nature and did not issue false alarms. Through the findings of this initial assessment, this article provides insights into how the field of epidemic intelligence can advance through an international network and, more specifically, how it was further developed in the EAR project. </p>","PeriodicalId":87059,"journal":{"name":"Biosecurity and bioterrorism : biodefense strategy, practice, and science","volume":"12 6","pages":"325-36"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/bsp.2014.0031","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosecurity and bioterrorism : biodefense strategy, practice, and science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/bsp.2014.0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The Early Alerting and Reporting (EAR) project, launched in 2008, is aimed at improving global early alerting and risk assessment and evaluating the feasibility and opportunity of integrating the analysis of biological, chemical, radionuclear (CBRN), and pandemic influenza threats. At a time when no international collaborations existed in the field of event-based surveillance, EAR's innovative approach involved both epidemic intelligence experts and internet-based biosurveillance system providers in the framework of an international collaboration called the Global Health Security Initiative, which involved the ministries of health of the G7 countries and Mexico, the World Health Organization, and the European Commission. The EAR project pooled data from 7 major internet-based biosurveillance systems onto a common portal that was progressively optimized for biological threat detection under the guidance of epidemic intelligence experts from public health institutions in Canada, the European Centre for Disease Prevention and Control, France, Germany, Italy, Japan, the United Kingdom, and the United States. The group became the first end users of the EAR portal, constituting a network of analysts working with a common standard operating procedure and risk assessment tools on a rotation basis to constantly screen and assess public information on the web for events that could suggest an intentional release of biological agents. Following the first 2-year pilot phase, the EAR project was tested in its capacity to monitor biological threats, proving that its working model was feasible and demonstrating the high commitment of the countries and international institutions involved. During the testing period, analysts using the EAR platform did not miss intentional events of a biological nature and did not issue false alarms. Through the findings of this initial assessment, this article provides insights into how the field of epidemic intelligence can advance through an international network and, more specifically, how it was further developed in the EAR project.