Geodesic image regression with a sparse parameterization of diffeomorphisms.

James Fishbaugh, Marcel Prastawa, Guido Gerig, Stanley Durrleman
{"title":"Geodesic image regression with a sparse parameterization of diffeomorphisms.","authors":"James Fishbaugh,&nbsp;Marcel Prastawa,&nbsp;Guido Gerig,&nbsp;Stanley Durrleman","doi":"10.1007/978-3-642-40020-9_9","DOIUrl":null,"url":null,"abstract":"<p><p>Image regression allows for time-discrete imaging data to be modeled continuously, and is a crucial tool for conducting statistical analysis on longitudinal images. Geodesic models are particularly well suited for statistical analysis, as image evolution is fully characterized by a baseline image and initial momenta. However, existing geodesic image regression models are parameterized by a large number of initial momenta, equal to the number of image voxels. In this paper, we present a sparse geodesic image regression framework which greatly reduces the number of model parameters. We combine a control point formulation of deformations with a <i>L</i><sup>1</sup> penalty to select the most relevant subset of momenta. This way, the number of model parameters reflects the complexity of anatomical changes in time rather than the sampling of the image. We apply our method to both synthetic and real data and show that we can decrease the number of model parameters (from the number of voxels down to hundreds) with only minimal decrease in model accuracy. The reduction in model parameters has the potential to improve the power of ensuing statistical analysis, which faces the challenging problem of high dimensionality.</p>","PeriodicalId":90833,"journal":{"name":"Geometric science of information : first international conference, GSI 2013, Paris, France, August 28-30, 2013 : proceedings. Geometric Science of Information (1st : 2013 : Paris, France)","volume":"8085 ","pages":"95-102"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-642-40020-9_9","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric science of information : first international conference, GSI 2013, Paris, France, August 28-30, 2013 : proceedings. Geometric Science of Information (1st : 2013 : Paris, France)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-642-40020-9_9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Image regression allows for time-discrete imaging data to be modeled continuously, and is a crucial tool for conducting statistical analysis on longitudinal images. Geodesic models are particularly well suited for statistical analysis, as image evolution is fully characterized by a baseline image and initial momenta. However, existing geodesic image regression models are parameterized by a large number of initial momenta, equal to the number of image voxels. In this paper, we present a sparse geodesic image regression framework which greatly reduces the number of model parameters. We combine a control point formulation of deformations with a L1 penalty to select the most relevant subset of momenta. This way, the number of model parameters reflects the complexity of anatomical changes in time rather than the sampling of the image. We apply our method to both synthetic and real data and show that we can decrease the number of model parameters (from the number of voxels down to hundreds) with only minimal decrease in model accuracy. The reduction in model parameters has the potential to improve the power of ensuing statistical analysis, which faces the challenging problem of high dimensionality.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
差分同态稀疏参数化的测地线图像回归。
图像回归允许对时间离散成像数据进行连续建模,并且是对纵向图像进行统计分析的关键工具。测地线模型特别适合于统计分析,因为图像演化完全由基线图像和初始动量表征。然而,现有的测地线图像回归模型是由大量初始动量参数化的,初始动量等于图像体素的数量。本文提出了一种稀疏测地线图像回归框架,大大减少了模型参数的数量。我们将变形的控制点公式与L1惩罚相结合,以选择最相关的动量子集。这样,模型参数的个数反映的是解剖随时间变化的复杂性,而不是图像的采样。我们将我们的方法应用于合成数据和真实数据,并表明我们可以减少模型参数的数量(从体素数量减少到数百),而模型精度只会有最小的下降。模型参数的减少有可能提高后续统计分析的能力,这面临着高维问题的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometric Science of Information: 6th International Conference, GSI 2023, St. Malo, France, August 30 – September 1, 2023, Proceedings, Part II Geometric Science of Information: 6th International Conference, GSI 2023, St. Malo, France, August 30 – September 1, 2023, Proceedings, Part I Geometric Science of Information: 5th International Conference, GSI 2021, Paris, France, July 21–23, 2021, Proceedings Geodesic image regression with a sparse parameterization of diffeomorphisms. Geometric Science of Information: 4th International Conference, GSI 2019, Toulouse, France, August 27–29, 2019, Proceedings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1