Evaluation of Normalization and PCA on the Performance of Classifiers for Protein Crystallization Images.

İmren Dinç, Madhav Sigdel, Semih Dinç, Madhu S Sigdel, Marc L Pusey, Ramazan S Aygün
{"title":"Evaluation of Normalization and PCA on the Performance of Classifiers for Protein Crystallization Images.","authors":"İmren Dinç,&nbsp;Madhav Sigdel,&nbsp;Semih Dinç,&nbsp;Madhu S Sigdel,&nbsp;Marc L Pusey,&nbsp;Ramazan S Aygün","doi":"10.1109/SECON.2014.6950744","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we investigate the performance of classification of protein crystallization images captured during protein crystal growth process. We group protein crystallization images into 3 categories: noncrystals, likely leads (conditions that may yield formation of crystals) and crystals. In this research, we only consider the subcategories of noncrystal and likely leads protein crystallization images separately. We use 5 different classifiers to solve this problem and we applied some data preprocessing methods such as principal component analysis (PCA), min-max (MM) normalization and z-score (ZS) normalization methods to our datasets in order to evaluate their effects on classifiers for the noncrystal and likely leads datasets. We performed our experiments on 1606 noncrystal and 245 likely leads images independently. We had satisfactory results for both datasets. We reached 96.8% accuracy for noncrystal dataset and 94.8% accuracy for likely leads dataset. Our target is to investigate the best classifiers with optimal preprocessing techniques on both noncrystal and likely leads datasets.</p>","PeriodicalId":90950,"journal":{"name":"Proceedings of IEEE Southeastcon. IEEE Southeastcon","volume":"2014 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/SECON.2014.6950744","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Southeastcon. IEEE Southeastcon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2014.6950744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In this paper, we investigate the performance of classification of protein crystallization images captured during protein crystal growth process. We group protein crystallization images into 3 categories: noncrystals, likely leads (conditions that may yield formation of crystals) and crystals. In this research, we only consider the subcategories of noncrystal and likely leads protein crystallization images separately. We use 5 different classifiers to solve this problem and we applied some data preprocessing methods such as principal component analysis (PCA), min-max (MM) normalization and z-score (ZS) normalization methods to our datasets in order to evaluate their effects on classifiers for the noncrystal and likely leads datasets. We performed our experiments on 1606 noncrystal and 245 likely leads images independently. We had satisfactory results for both datasets. We reached 96.8% accuracy for noncrystal dataset and 94.8% accuracy for likely leads dataset. Our target is to investigate the best classifiers with optimal preprocessing techniques on both noncrystal and likely leads datasets.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
归一化和主成分分析对蛋白质结晶图像分类器性能的评价。
在本文中,我们研究了蛋白质晶体生长过程中捕获的蛋白质结晶图像的分类性能。我们将蛋白质结晶图像分为3类:非晶体、可能导联(可能形成晶体的条件)和晶体。在本研究中,我们只考虑非晶体和可能导致蛋白质结晶图像的子类别。我们使用了5种不同的分类器来解决这个问题,并对我们的数据集应用了一些数据预处理方法,如主成分分析(PCA)、最小-最大(MM)归一化和z-score (ZS)归一化方法,以评估它们对非晶体和可能导联数据集的分类器的影响。我们分别对1606个非晶和245个可能导联图像进行了实验。我们对两个数据集都有满意的结果。我们对非晶体数据集的准确率达到96.8%,对可能导联数据集的准确率达到94.8%。我们的目标是研究在非晶体和可能导联数据集上使用最佳预处理技术的最佳分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Specular Reflection Removal for 3D Reconstruction of Tissues using Endoscopy Videos. Data Reduction Solution for Driving Simulator. Evaluation of Semi-supervised Learning for Classification of Protein Crystallization Imagery. Evaluation of Normalization and PCA on the Performance of Classifiers for Protein Crystallization Images. Autofocusing for Microscopic Images using Harris Corner Response Measure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1