Predicting Fault Prone Modules by the Dempster-Shafer Belief Networks.

Lan Guo, Bojan Cukic, Harshinder Singh
{"title":"Predicting Fault Prone Modules by the Dempster-Shafer Belief Networks.","authors":"Lan Guo,&nbsp;Bojan Cukic,&nbsp;Harshinder Singh","doi":"10.1109/ASE.2003.1240314","DOIUrl":null,"url":null,"abstract":"<p><p>This paper describes a novel methodology for predicting fault prone modules. The methodology is based on Dempster-Shafer (D-S) belief networks. Our approach consists of three steps: First, building the Dempster-Shafer network by the induction algorithm; Second, selecting the predictors (attributes) by the logistic procedure; Third, feeding the predictors describing the modules of the current project into the inducted Dempster-Shafer network and identifying fault prone modules. We applied this methodology to a NASA dataset. The prediction accuracy of our methodology is higher than that achieved by logistic regression or discriminant analysis on the same dataset.</p>","PeriodicalId":90954,"journal":{"name":"Proceedings. IEEE International Automated Software Engineering Conference","volume":"2003 ","pages":"249-252"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ASE.2003.1240314","citationCount":"93","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Automated Software Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2003.1240314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

Abstract

This paper describes a novel methodology for predicting fault prone modules. The methodology is based on Dempster-Shafer (D-S) belief networks. Our approach consists of three steps: First, building the Dempster-Shafer network by the induction algorithm; Second, selecting the predictors (attributes) by the logistic procedure; Third, feeding the predictors describing the modules of the current project into the inducted Dempster-Shafer network and identifying fault prone modules. We applied this methodology to a NASA dataset. The prediction accuracy of our methodology is higher than that achieved by logistic regression or discriminant analysis on the same dataset.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dempster-Shafer信念网络预测易发故障模块。
本文描述了一种预测易发故障模块的新方法。该方法基于Dempster-Shafer (D-S)信念网络。我们的方法包括三个步骤:首先,通过归纳算法构建Dempster-Shafer网络;其次,通过逻辑过程选择预测因子(属性);第三,将描述当前项目模块的预测因子输入到诱导的Dempster-Shafer网络中,识别出易发生故障的模块。我们将这种方法应用于NASA的数据集。该方法的预测精度高于同一数据集上的逻辑回归或判别分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting Fault Prone Modules by the Dempster-Shafer Belief Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1