Measurements of streamer head potential and conductivity of streamer column in the cold nonequilibrium atmospheric plasmas.

IF 3.3 2区 物理与天体物理 Q1 PHYSICS, FLUIDS & PLASMAS Plasma Sources Science & Technology Pub Date : 2012-06-01 DOI:10.1088/0963-0252/21/3/034006
A Shashurin, M N Shneider, M Keidar
{"title":"Measurements of streamer head potential and conductivity of streamer column in the cold nonequilibrium atmospheric plasmas.","authors":"A Shashurin, M N Shneider, M Keidar","doi":"10.1088/0963-0252/21/3/034006","DOIUrl":null,"url":null,"abstract":"<p><p>This work presents a simple method for the characterization of streamers developing in cold atmospheric plasma jets. The method is based upon stopping (\"scattering\") of streamer by means of external DC potential in order to determine the potential of the streamer head. The experimental evidence presented in this work does not support the model of the electrically insulated streamer head. On the contrary, it is shown that the electrode potential is transferred to the streamer head along the streamer column to which it is attached with no significant voltage drop. Based on the proposed method, we determine various streamer parameters such as head charge (1-2×10<sup>8</sup> electrons), electrical field in the head vicinity (about 100 kV/cm), average conductivity (10<sup>-2</sup> Ω<sup>-1</sup>cm<sup>-1</sup>) and plasma density of the streamer column (2×10<sup>13</sup> cm<sup>-3</sup>).</p>","PeriodicalId":54599,"journal":{"name":"Plasma Sources Science & Technology","volume":"21 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/0963-0252/21/3/034006","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science & Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/0963-0252/21/3/034006","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 76

Abstract

This work presents a simple method for the characterization of streamers developing in cold atmospheric plasma jets. The method is based upon stopping ("scattering") of streamer by means of external DC potential in order to determine the potential of the streamer head. The experimental evidence presented in this work does not support the model of the electrically insulated streamer head. On the contrary, it is shown that the electrode potential is transferred to the streamer head along the streamer column to which it is attached with no significant voltage drop. Based on the proposed method, we determine various streamer parameters such as head charge (1-2×108 electrons), electrical field in the head vicinity (about 100 kV/cm), average conductivity (10-2 Ω-1cm-1) and plasma density of the streamer column (2×1013 cm-3).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冷非平衡大气等离子体中拖缆头电位和拖缆柱电导率的测量。
这项工作提出了一种简单的方法来表征在冷大气等离子体射流中发展的流光。该方法是基于通过外部直流电位停止(“散射”)流光,以确定流光头的电位。在这项工作中提出的实验证据不支持电绝缘拖缆头的模型。相反,电极电位沿其附着的流线柱传递到流线头,没有明显的电压降。基于所提出的方法,我们确定了各种拖缆参数,如头部电荷(1-2×108电子),头部附近的电场(约100 kV/cm),平均电导率(10-2 Ω-1cm-1)和拖缆柱的等离子体密度(2×1013 cm-3)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasma Sources Science & Technology
Plasma Sources Science & Technology 物理-物理:流体与等离子体
CiteScore
7.10
自引率
31.60%
发文量
258
审稿时长
4.5 months
期刊介绍: Plasma Sources Science and Technology (PSST) reports on low-temperature plasmas and ionized gases operating over all ranges of gas pressure and plasma density, with varying degrees of ionization. The emphasis of PSST is on the fundamental science of these plasmas, their sources and the physical and chemical processes initiated or sustained by them, as elucidated through theoretical, computational or experimental techniques. PSST also reports on new experimentally or theoretically derived fundamental data (e.g. cross sections, transport coefficients) required for investigation of low temperature plasmas. Reports that relate to the technology and applications of these plasmas should be closely linked to the science and fundamental processes occurring in the plasma state.
期刊最新文献
Atmospheric pressure plasma treatment of skin: penetration into hair follicles. Vibrational kinetics in repetitively pulsed atmospheric pressure nitrogen discharges: average-power-dependent switching behaviour. Reproducibility of 'COST reference microplasma jets'. Disrupting the spatio-temporal symmetry of the electron dynamics in atmospheric pressure plasmas by voltage waveform tailoring. Plasma generation and processing of interstellar carbonaceous dust analogs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1