{"title":"A mini review of nanomaterials on photodynamic therapy","authors":"Chencheng Dong , Qiuying Yi , Wenzhang Fang , Jinlong Zhang","doi":"10.1016/j.jphotochemrev.2022.100568","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>In this account, the reactive oxygen species (ROS) in photodynamic therapy (PDT) were deliberately reviewed. First, the specific definition of ROS and PDT were readily clarified. Afterward, this review focuses on the fundamental principles and applications of PDT. Due to strong </span>oxidation ability of radicals (e.g., •OH and O</span><sub>2</sub><sup>•-</sup>) and non-radical (e.g., <sup>1</sup>O<sub>2</sub> and H<sub>2</sub>O<sub>2</sub>), these ROS would attack the in vitro and i<em>n vivo</em> tumor cells, thus achieving the goal of cancer treatment. Then, ROS in PDT for cancer treatment was thoroughly reviewed, including the mechanism and photosensitizer (PS) selection (i.e., nanomaterials). Ultimately, emphasis was made on the challenges, research gap, and prospects of ROS in cancer treatment and critically discussed. Hopefully, this review can offer detailed theoretical guidance for the researchers who participate in the study regarding ROS in PDT.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"54 ","pages":"Article 100568"},"PeriodicalIF":12.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389556722000879","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
In this account, the reactive oxygen species (ROS) in photodynamic therapy (PDT) were deliberately reviewed. First, the specific definition of ROS and PDT were readily clarified. Afterward, this review focuses on the fundamental principles and applications of PDT. Due to strong oxidation ability of radicals (e.g., •OH and O2•-) and non-radical (e.g., 1O2 and H2O2), these ROS would attack the in vitro and in vivo tumor cells, thus achieving the goal of cancer treatment. Then, ROS in PDT for cancer treatment was thoroughly reviewed, including the mechanism and photosensitizer (PS) selection (i.e., nanomaterials). Ultimately, emphasis was made on the challenges, research gap, and prospects of ROS in cancer treatment and critically discussed. Hopefully, this review can offer detailed theoretical guidance for the researchers who participate in the study regarding ROS in PDT.
期刊介绍:
The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.