{"title":"Targeted poly(L-glutamic acid)-based hybrid peptosomes co-loaded with doxorubicin and USPIONs as a theranostic platform for metastatic breast cancer","authors":"Maliheh Hasannia PhD , Kamran Lamei PhD , Khalil Abnous PhD , Seyed Mohammad Taghdisi PhD , Sirous Nekooei MD, PhD , Negar Nekooei MD , Mohammad Ramezani PhD , Mona Alibolandi PhD","doi":"10.1016/j.nano.2022.102645","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Peptosomes, as a vesicular polypeptide-based system and a versatile carrier for co-delivery of hydrophilic<span> and hydrophobic materials, provide great delivery opportunities due to the intrinsic biocompatibility<span><span> and biodegradability of the polypeptides </span>backbone. In the current study, a novel poly(L-glutamic acid)-block-polylactic acid di-block </span></span></span>copolymer (PGA-PLA) was synthesized in two steps. Firstly, γ-benzyl L-glutamate-N-carboxy </span>anhydride<span><span><span> (BLG-NCA) and 3,6-dimethyl-1,4-dioxane-2,5-dione were polymerized using N-hexylamine and benzyl alcohol<span> as initiators to produce poly(γ-benzyl L-glutamate (PBLG) and polylactic acid. Then, PBLG was deprotected to produce PGA. Secondly, PGA was conjugated to the benzyl-PLGA to fabricate PGA-PLA diblock copolymer. The synthesized diblock copolymer was used for the encapsulation of </span></span>doxorubicin, as hydrophilic anticancer and ultra-small superparamagnetic iron oxide </span>nanoparticles<span> (USPIONs) as hydrophobic contrast agent within aqueous core and bilayer of vesicular peptosome, respectively </span></span></span><em>via</em><span><span> double emulsion method. The prepared peptosomes (Pep@USPIONs-DOX) controlled the release of DOX (<15 % of the encapsulated DOX release up to 240 h of incubation at the physiological conditions) while increasing the stability and solubility of the hydrophobic USPIONs. Then, AS1411 </span>DNA<span><span><span> aptamer was decorated on the surface of the PGA-PLA peptosomes (Apt-Pep@USPIONs-DOX). The prepared targeted and non-targeted platforms showed spherical morphology with </span>hydrodynamic sizes of 265 ± 52 and 229 ± 44 </span>nm respectively. </span></span><em>In vitro</em><span> cellular cytotoxicity<span><span> and cellular uptake were studied in nucleolin<span> positive (4T1) and nucleolin negative (CHO) cell lines. Cellular uptake of the targeted formulation was greater than that of non-targeted peptosome, while cellular internalization of these peptosomes was identical in </span></span>CHO<span> cells. Moreover, targeted peptosomes showed greater toxicity than non-targeted peptosome in 4T1 cell line<span>. The prepared theranostic targeted peptosomes demonstrated improved capability in terms of survival rate, biodistribution, tumor suppression efficiency, and MR imaging in the 4T1 tumor-bearing mice.</span></span></span></span></p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":"48 ","pages":"Article 102645"},"PeriodicalIF":4.7000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine: Nanotechnology, Biology and Medicine","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963422001319","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Peptosomes, as a vesicular polypeptide-based system and a versatile carrier for co-delivery of hydrophilic and hydrophobic materials, provide great delivery opportunities due to the intrinsic biocompatibility and biodegradability of the polypeptides backbone. In the current study, a novel poly(L-glutamic acid)-block-polylactic acid di-block copolymer (PGA-PLA) was synthesized in two steps. Firstly, γ-benzyl L-glutamate-N-carboxy anhydride (BLG-NCA) and 3,6-dimethyl-1,4-dioxane-2,5-dione were polymerized using N-hexylamine and benzyl alcohol as initiators to produce poly(γ-benzyl L-glutamate (PBLG) and polylactic acid. Then, PBLG was deprotected to produce PGA. Secondly, PGA was conjugated to the benzyl-PLGA to fabricate PGA-PLA diblock copolymer. The synthesized diblock copolymer was used for the encapsulation of doxorubicin, as hydrophilic anticancer and ultra-small superparamagnetic iron oxide nanoparticles (USPIONs) as hydrophobic contrast agent within aqueous core and bilayer of vesicular peptosome, respectively via double emulsion method. The prepared peptosomes (Pep@USPIONs-DOX) controlled the release of DOX (<15 % of the encapsulated DOX release up to 240 h of incubation at the physiological conditions) while increasing the stability and solubility of the hydrophobic USPIONs. Then, AS1411 DNA aptamer was decorated on the surface of the PGA-PLA peptosomes (Apt-Pep@USPIONs-DOX). The prepared targeted and non-targeted platforms showed spherical morphology with hydrodynamic sizes of 265 ± 52 and 229 ± 44 nm respectively. In vitro cellular cytotoxicity and cellular uptake were studied in nucleolin positive (4T1) and nucleolin negative (CHO) cell lines. Cellular uptake of the targeted formulation was greater than that of non-targeted peptosome, while cellular internalization of these peptosomes was identical in CHO cells. Moreover, targeted peptosomes showed greater toxicity than non-targeted peptosome in 4T1 cell line. The prepared theranostic targeted peptosomes demonstrated improved capability in terms of survival rate, biodistribution, tumor suppression efficiency, and MR imaging in the 4T1 tumor-bearing mice.
期刊介绍:
Nanomedicine: Nanotechnology, Biology and Medicine (NBM) is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.