{"title":"Engineered graphene quantum dot nanocomposite triggers α-synuclein defibrillation: Therapeutics against Parkinson's disease","authors":"Poonkuzhali Kaliyaperumal , Seenivasagan Renganathan , Karthika Arumugam , Bukola Rhoda Aremu","doi":"10.1016/j.nano.2022.102608","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Emerging clinically required α-synuclein (α-syn) inhibitor which acts as a neuroprotective<span><span> nanocomposite </span>drug is in increased demand as a patient-safe </span></span>central nervous system<span> therapeutic. This inhibitor is intended to chemically engineer graphene quantum dot (GQD) with blue luminescence, and stands to be a potential cure for </span></span>Parkinson's disease. It has been theorized that α-syn aggregation is a critical step in the development of Parkinson's. Hence narrow the target by α-syn inhibition, through chemically synthesize methyl </span><em>N</em>-allyl <em>N</em><span>-benzoylmethioninate (MABM) and functionally engineer the surface of GQD to target the brain delivery on C57BL/6 mice. Spectroscopic and simulation studies confirm defibrillation<span> through the interaction between N-terminal amino acids<span> and MABM-GQD nanoparticles<span>, which makes nontoxic α-syn. Therefore, this drug's ability to cross the blood-brain barrier in vitro functionally prevents neuronal loss in neuroblastoma cells. Thus, in vivo cerebral blood flow analysis using magnetic resonance imaging illustrates, how this nanocomposite can possibly treat Parkinson's.</span></span></span></span></p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":"47 ","pages":"Article 102608"},"PeriodicalIF":4.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine: Nanotechnology, Biology and Medicine","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963422000946","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Emerging clinically required α-synuclein (α-syn) inhibitor which acts as a neuroprotective nanocomposite drug is in increased demand as a patient-safe central nervous system therapeutic. This inhibitor is intended to chemically engineer graphene quantum dot (GQD) with blue luminescence, and stands to be a potential cure for Parkinson's disease. It has been theorized that α-syn aggregation is a critical step in the development of Parkinson's. Hence narrow the target by α-syn inhibition, through chemically synthesize methyl N-allyl N-benzoylmethioninate (MABM) and functionally engineer the surface of GQD to target the brain delivery on C57BL/6 mice. Spectroscopic and simulation studies confirm defibrillation through the interaction between N-terminal amino acids and MABM-GQD nanoparticles, which makes nontoxic α-syn. Therefore, this drug's ability to cross the blood-brain barrier in vitro functionally prevents neuronal loss in neuroblastoma cells. Thus, in vivo cerebral blood flow analysis using magnetic resonance imaging illustrates, how this nanocomposite can possibly treat Parkinson's.
期刊介绍:
Nanomedicine: Nanotechnology, Biology and Medicine (NBM) is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.