{"title":"Study of X-ray topography using the super-Borrmann effect.","authors":"J Matsui, K Takatsu, Y Tsusaka","doi":"10.1107/S1600577522007779","DOIUrl":null,"url":null,"abstract":"<p><p>X-ray topography exerting the super-Borrmann effect has been performed using synchrotron radiation to display dislocation images with a high-speed and high-resolution CMOS camera. Forward-transmitted X-rays are positively employed instead of reflected X-rays to reveal dislocations in relatively thick crystals by simultaneously exciting a pair of adjacent {111} planes owing to the super-Borrmann effect. Before the experiment, minimum values of the attenuation coefficients A<sub>min</sub><sup>P</sup> for σ and π polarizations of the incident X-rays in the three-beam case are calculated. Results demonstrate that A<sub>min</sub><sup>P</sup> for both polarizations are almost 20 times larger than those in the two-beam (usual Borrmann effect) case. The transmitted X-rays can be used to confirm the efficacy of taking topographs under the super-Borrmann conditions, as well as under multiple-diffraction conditions. Furthermore, super-Borrmann topographs can be considered for relatively thick crystals, where a conventional Lang X-ray topography technique is difficult to apply.</p>","PeriodicalId":17114,"journal":{"name":"Journal of Synchrotron Radiation","volume":"29 Pt 5","pages":"1251-1257"},"PeriodicalIF":2.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455216/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577522007779","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
X-ray topography exerting the super-Borrmann effect has been performed using synchrotron radiation to display dislocation images with a high-speed and high-resolution CMOS camera. Forward-transmitted X-rays are positively employed instead of reflected X-rays to reveal dislocations in relatively thick crystals by simultaneously exciting a pair of adjacent {111} planes owing to the super-Borrmann effect. Before the experiment, minimum values of the attenuation coefficients AminP for σ and π polarizations of the incident X-rays in the three-beam case are calculated. Results demonstrate that AminP for both polarizations are almost 20 times larger than those in the two-beam (usual Borrmann effect) case. The transmitted X-rays can be used to confirm the efficacy of taking topographs under the super-Borrmann conditions, as well as under multiple-diffraction conditions. Furthermore, super-Borrmann topographs can be considered for relatively thick crystals, where a conventional Lang X-ray topography technique is difficult to apply.
期刊介绍:
Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.