Comparison of the proposed DCNN model with standard CNN architectures for retinal diseases classification.

Ramya Mohan, Kirupa Ganapathy, Rama Arunmozhi
{"title":"Comparison of the proposed DCNN model with standard CNN architectures for retinal diseases classification.","authors":"Ramya Mohan,&nbsp;Kirupa Ganapathy,&nbsp;Rama Arunmozhi","doi":"10.47750/jptcp.2022.945","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning in medical image analysis has indicated increasing interest in the classification of signs of abnormalities. In this study, a new convolutional neural network (CNN) architecture (MIDNet18) Medical Image Detection Network was proposed for the classification of retinal diseases using optical coherence tomography (OCT) images. The model consists of 14 convolutional layers, seven Max Pooling layers, four dense layers, and one classification layer. A multi-class classification layer in the MIDNet18 is used to classify the OCT images into either normal or any of the three abnormal types: Choroidal Neovascularization (CNV), Drusen, and Diabetic Macular Edema (DME). The dataset consists of 83,484 training images, 41,741 validation images, and 968 test images. According to the experimental results, MIDNet18 obtains an accuracy of 98.86%, and their performances are compared with other standard CNN models; ResNet-50 (83.26%), MobileNet (93.29%) and DenseNet (92.5%). Also, MIDNet18 with a <i>p</i>-value < 0.001 has been proved to be statistically significant than other standard CNN architectures in classifying retinal diseases using OCT images.</p>","PeriodicalId":73904,"journal":{"name":"Journal of population therapeutics and clinical pharmacology = Journal de la therapeutique des populations et de la pharmacologie clinique","volume":"29 3","pages":"e112-e122"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of population therapeutics and clinical pharmacology = Journal de la therapeutique des populations et de la pharmacologie clinique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47750/jptcp.2022.945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning in medical image analysis has indicated increasing interest in the classification of signs of abnormalities. In this study, a new convolutional neural network (CNN) architecture (MIDNet18) Medical Image Detection Network was proposed for the classification of retinal diseases using optical coherence tomography (OCT) images. The model consists of 14 convolutional layers, seven Max Pooling layers, four dense layers, and one classification layer. A multi-class classification layer in the MIDNet18 is used to classify the OCT images into either normal or any of the three abnormal types: Choroidal Neovascularization (CNV), Drusen, and Diabetic Macular Edema (DME). The dataset consists of 83,484 training images, 41,741 validation images, and 968 test images. According to the experimental results, MIDNet18 obtains an accuracy of 98.86%, and their performances are compared with other standard CNN models; ResNet-50 (83.26%), MobileNet (93.29%) and DenseNet (92.5%). Also, MIDNet18 with a p-value < 0.001 has been proved to be statistically significant than other standard CNN architectures in classifying retinal diseases using OCT images.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提出的DCNN模型与标准CNN体系结构用于视网膜疾病分类的比较。
医学图像分析中的深度学习表明,对异常迹象的分类越来越感兴趣。本研究提出了一种新的卷积神经网络(CNN)架构(MIDNet18)医学图像检测网络,用于光学相干断层扫描(OCT)图像的视网膜疾病分类。该模型由14个卷积层、7个最大池化层、4个密集层和1个分类层组成。MIDNet18中的多类分类层用于将OCT图像分为正常或三种异常类型中的任何一种:脉络膜新生血管(CNV), Drusen和糖尿病性黄斑水肿(DME)。该数据集由83484张训练图像、41741张验证图像和968张测试图像组成。根据实验结果,MIDNet18获得了98.86%的准确率,并与其他标准CNN模型进行了性能比较;ResNet-50(83.26%)、MobileNet(93.29%)和DenseNet(92.5%)。此外,在使用OCT图像对视网膜疾病进行分类时,已证明p值< 0.001的MIDNet18比其他标准CNN架构具有统计学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of forward selection strategy using C4.5 algorithm to improve the accuracy of classification's data set. Association of oral candidiasis with oral lichen planus in patients using corticosteroid therapy - Meta-analysis. Long COVID-19 prevalence among a sample of infected people in Erbil city. Human development index and innovation capabilities in the health sector of UAE. Comparison of the proposed DCNN model with standard CNN architectures for retinal diseases classification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1