Chengwu Lu, Linfeng Wang, Libao Zhang, Chaghui Xue, Hong Ye, Xiaojie Chen, Jianbin Wu, Jin Xiao
{"title":"Li-doped calcium phosphate cement for accelerated bone regeneration of osteoporotic bone defect.","authors":"Chengwu Lu, Linfeng Wang, Libao Zhang, Chaghui Xue, Hong Ye, Xiaojie Chen, Jianbin Wu, Jin Xiao","doi":"10.1177/22808000221099012","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoporotic fractures seriously endanger the elderly quality of life, especially postmenopausal women. Currently, calcium phosphate cement (CPC) is one of the materials used for the treatment of osteoporotic fractures. This study intends to investigate the biological effects of lithium (Li)-doped CPC. Li was dissolved into ultrapure water as curing solution to prepare CPC@Li composite material. Li did not affect the morphology of CPC. CPC@Li composite showed a sustained release of Li in 14 days. Compared with CPC, CPC@Li promoted the adhesion, proliferation, and osteogenic differentiation of rat bone marrow stem cells. The result of femur implantation in an osteoporosis mouse model showed that a larger amount of new bone was formed surrounding the CPC@Li implant and closely to the implant surface, indicating favorable osteogenesis and osteointegration capabilities. Li-doped CPC is promising to be used in clinic for its enhanced bone regeneration ability.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Functional Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/22808000221099012","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2
Abstract
Osteoporotic fractures seriously endanger the elderly quality of life, especially postmenopausal women. Currently, calcium phosphate cement (CPC) is one of the materials used for the treatment of osteoporotic fractures. This study intends to investigate the biological effects of lithium (Li)-doped CPC. Li was dissolved into ultrapure water as curing solution to prepare CPC@Li composite material. Li did not affect the morphology of CPC. CPC@Li composite showed a sustained release of Li in 14 days. Compared with CPC, CPC@Li promoted the adhesion, proliferation, and osteogenic differentiation of rat bone marrow stem cells. The result of femur implantation in an osteoporosis mouse model showed that a larger amount of new bone was formed surrounding the CPC@Li implant and closely to the implant surface, indicating favorable osteogenesis and osteointegration capabilities. Li-doped CPC is promising to be used in clinic for its enhanced bone regeneration ability.
期刊介绍:
The Journal of Applied Biomaterials & Functional Materials (JABFM) is an open access, peer-reviewed, international journal considering the publication of original contributions, reviews and editorials dealing with clinical and laboratory investigations in the fast growing field of biomaterial sciences and functional materials.
The areas covered by the journal will include:
• Biomaterials / Materials for biomedical applications
• Functional materials
• Hybrid and composite materials
• Soft materials
• Hydrogels
• Nanomaterials
• Gene delivery
• Nonodevices
• Metamaterials
• Active coatings
• Surface functionalization
• Tissue engineering
• Cell delivery/cell encapsulation systems
• 3D printing materials
• Material characterization
• Biomechanics