{"title":"Retinoic acid receptors at 35 years.","authors":"Martin Petkovich, Pierre Chambon","doi":"10.1530/JME-22-0097","DOIUrl":null,"url":null,"abstract":"<p><p>For almost a century, vitamin A has been known as a nutrient critical for normal development, differentiation, and homeostasis; accordingly, there has been much interest in understanding its mechanism of action. This review is about the discovery of specific receptors for the vitamin A derivative, retinoic acid (RA), which launched extensive molecular, genetic, and structural investigations into these new members of the nuclear receptor superfamily of transcriptional regulators. These included two families of receptors, the RAR isotypes (α, β, and γ) along with three RXR isotypes (α, β, and γ), which bind as RXR/RAR heterodimers to cis-acting response elements of RA target genes to generate a high degree of complexity. Such studies have provided deep molecular insight into how the widespread pleiotropic effects of RA can be generated.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"T13-T24"},"PeriodicalIF":4.7000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-22-0097","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 19
Abstract
For almost a century, vitamin A has been known as a nutrient critical for normal development, differentiation, and homeostasis; accordingly, there has been much interest in understanding its mechanism of action. This review is about the discovery of specific receptors for the vitamin A derivative, retinoic acid (RA), which launched extensive molecular, genetic, and structural investigations into these new members of the nuclear receptor superfamily of transcriptional regulators. These included two families of receptors, the RAR isotypes (α, β, and γ) along with three RXR isotypes (α, β, and γ), which bind as RXR/RAR heterodimers to cis-acting response elements of RA target genes to generate a high degree of complexity. Such studies have provided deep molecular insight into how the widespread pleiotropic effects of RA can be generated.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico