Unified risk analysis in radiation therapy

IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Zeitschrift fur Medizinische Physik Pub Date : 2023-11-01 DOI:10.1016/j.zemedi.2022.08.006
Daniel Lohmann, Maya Shariff, Philipp Schubert, Tim Oliver Sauer, Rainer Fietkau, Christoph Bert
{"title":"Unified risk analysis in radiation therapy","authors":"Daniel Lohmann,&nbsp;Maya Shariff,&nbsp;Philipp Schubert,&nbsp;Tim Oliver Sauer,&nbsp;Rainer Fietkau,&nbsp;Christoph Bert","doi":"10.1016/j.zemedi.2022.08.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>The increasing complexity of new treatment methods as well as the Information Technology (IT) infrastructure within radiotherapy require new methods for risk analysis. This work presents a methodology on how to model the treatment process of radiotherapy in different levels. This subdivision makes it possible to perform workflow-specific risk analysis and to assess the impact of IT risks on the overall treatment workflow.</p></div><div><h3>Methods</h3><p>A Unified Modeling Language (UML) activity diagram is used to model the workflows. The subdivision of the workflows into different levels is done with the help of swim lanes. The model created in this way is exported in an xml-compatible format and stored in a database with the help of a Python program.</p></div><div><h3>Results</h3><p>Based on an existing risk analysis, the workflows CT Appointment, Glioblastoma Multiforme, and Deep Inspiration Breath Hold (DIBH) were modeled in detail. Part of the analysis are automatically generated workflow-specific risk matrices including risks of medical devices incorporated into a specific workflow. In addition, SQL queries allow to quickly retrieve e.g., the details of the medical device network installed in a department.</p></div><div><h3>Conclusion</h3><p>Activity diagrams of UML can be used to model workflows in radiotherapy. Through this, a connection between the different levels of the entire workflow can be established and workflow-specific risk analysis is possible.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"33 4","pages":"Pages 479-488"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388922000927/pdfft?md5=ba80fcde953fca3d36d229a6788bd796&pid=1-s2.0-S0939388922000927-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939388922000927","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

The increasing complexity of new treatment methods as well as the Information Technology (IT) infrastructure within radiotherapy require new methods for risk analysis. This work presents a methodology on how to model the treatment process of radiotherapy in different levels. This subdivision makes it possible to perform workflow-specific risk analysis and to assess the impact of IT risks on the overall treatment workflow.

Methods

A Unified Modeling Language (UML) activity diagram is used to model the workflows. The subdivision of the workflows into different levels is done with the help of swim lanes. The model created in this way is exported in an xml-compatible format and stored in a database with the help of a Python program.

Results

Based on an existing risk analysis, the workflows CT Appointment, Glioblastoma Multiforme, and Deep Inspiration Breath Hold (DIBH) were modeled in detail. Part of the analysis are automatically generated workflow-specific risk matrices including risks of medical devices incorporated into a specific workflow. In addition, SQL queries allow to quickly retrieve e.g., the details of the medical device network installed in a department.

Conclusion

Activity diagrams of UML can be used to model workflows in radiotherapy. Through this, a connection between the different levels of the entire workflow can be established and workflow-specific risk analysis is possible.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
放射治疗中的统一风险分析
目的新的治疗方法以及放疗中的信息技术(IT)基础设施日益复杂,需要新的风险分析方法。这项工作提出了一种方法,即如何在不同层次上对放射治疗的治疗过程进行建模。方法使用统一建模语言(UML)活动图为工作流建模。借助泳道将工作流程细分为不同层次。结果在现有风险分析的基础上,对 CT 预约、多形性胶质母细胞瘤和深吸气屏气(DIBH)的工作流程进行了详细建模。分析的一部分是自动生成的工作流程特定风险矩阵,包括纳入特定工作流程的医疗设备的风险。此外,还可通过 SQL 查询快速检索科室中安装的医疗设备网络的详细信息。通过这种方法,可以在整个工作流程的不同层次之间建立联系,并进行针对工作流程的风险分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
10.00%
发文量
69
审稿时长
65 days
期刊介绍: Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing. Focuses of the articles are: -Biophysical methods in radiation therapy and nuclear medicine -Dosimetry and radiation protection -Radiological diagnostics and quality assurance -Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography -Ultrasonography diagnostics, application of laser and UV rays -Electronic processing of biosignals -Artificial intelligence and machine learning in medical physics In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.
期刊最新文献
Editorial Board Contents Source-detector trajectory optimization for CBCT metal artifact reduction based on PICCS reconstruction Reduction of patient specific quality assurance through plan complexity metrics for VMAT plans with an open-source TPS script Post-mastectomy radiotherapy: Impact of bolus thickness and irradiation technique on skin dose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1