Lack of UBE3A-Mediated Regulation of Synaptic SK2 Channels Contributes to Learning and Memory Impairment in the Female Mouse Model of Angelman Syndrome.

IF 3.1 4区 医学 Q2 Medicine Neural Plasticity Pub Date : 2022-10-04 eCollection Date: 2022-01-01 DOI:10.1155/2022/3923384
Jiandong Sun, Yan Liu, Xiaoning Hao, Michel Baudry, Xiaoning Bi
{"title":"Lack of UBE3A-Mediated Regulation of Synaptic SK2 Channels Contributes to Learning and Memory Impairment in the Female Mouse Model of Angelman Syndrome.","authors":"Jiandong Sun, Yan Liu, Xiaoning Hao, Michel Baudry, Xiaoning Bi","doi":"10.1155/2022/3923384","DOIUrl":null,"url":null,"abstract":"<p><p>Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by severe developmental delay, motor impairment, language and cognition deficits, and often with increased seizure activity. AS is caused by deficiency of UBE3A, which is both an E3 ligase and a cofactor for transcriptional regulation. We previously showed that the small conductance potassium channel protein SK2 is a UBE3A substrate, and that increased synaptic SK2 levels contribute to impairments in synaptic plasticity and fear-conditioning memory, as inhibition of SK2 channels significantly improved both synaptic plasticity and fear memory in male AS mice. In the present study, we investigated UBE3a-mediated regulation of synaptic plasticity and fear-conditioning in female AS mice. Results from both western blot and immunofluorescence analyses showed that synaptic SK2 levels were significantly increased in hippocampus of female AS mice, as compared to wild-type (WT) littermates. Like in male AS mice, long-term potentiation (LTP) was significantly reduced while long-term depression (LTD) was enhanced at hippocampal CA3-CA1 synapses of female AS mice, as compared to female WT mice. Both alterations were significantly reduced by treatment with the SK2 inhibitor, apamin. The shunting effect of SK2 channels on NMDA receptor was significantly larger in female AS mice as compared to female WT mice. Female AS mice also showed impairment in both contextual and tone memory recall, and this impairment was significantly reduced by apamin treatment. Our results indicate that like male AS mice, female AS mice showed significant impairment in both synaptic plasticity and fear-conditioning memory due to increased levels of synaptic SK2 channels. Any therapeutic strategy to reduce SK2-mediated inhibition of NMDAR should be beneficial to both male and female patients.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2022 ","pages":"3923384"},"PeriodicalIF":3.1000,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553421/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/3923384","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by severe developmental delay, motor impairment, language and cognition deficits, and often with increased seizure activity. AS is caused by deficiency of UBE3A, which is both an E3 ligase and a cofactor for transcriptional regulation. We previously showed that the small conductance potassium channel protein SK2 is a UBE3A substrate, and that increased synaptic SK2 levels contribute to impairments in synaptic plasticity and fear-conditioning memory, as inhibition of SK2 channels significantly improved both synaptic plasticity and fear memory in male AS mice. In the present study, we investigated UBE3a-mediated regulation of synaptic plasticity and fear-conditioning in female AS mice. Results from both western blot and immunofluorescence analyses showed that synaptic SK2 levels were significantly increased in hippocampus of female AS mice, as compared to wild-type (WT) littermates. Like in male AS mice, long-term potentiation (LTP) was significantly reduced while long-term depression (LTD) was enhanced at hippocampal CA3-CA1 synapses of female AS mice, as compared to female WT mice. Both alterations were significantly reduced by treatment with the SK2 inhibitor, apamin. The shunting effect of SK2 channels on NMDA receptor was significantly larger in female AS mice as compared to female WT mice. Female AS mice also showed impairment in both contextual and tone memory recall, and this impairment was significantly reduced by apamin treatment. Our results indicate that like male AS mice, female AS mice showed significant impairment in both synaptic plasticity and fear-conditioning memory due to increased levels of synaptic SK2 channels. Any therapeutic strategy to reduce SK2-mediated inhibition of NMDAR should be beneficial to both male and female patients.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺乏 UBE3A 介导的突触 SK2 通道调控导致雌性安杰曼综合征小鼠模型的学习和记忆障碍
安杰尔曼综合征(Angelman syndrome,AS)是一种罕见的神经发育障碍性疾病,以严重的发育迟缓、运动障碍、语言和认知障碍为特征,通常伴有癫痫发作活动增加。AS是由UBE3A缺乏引起的,UBE3A既是E3连接酶,也是转录调控的辅助因子。我们以前的研究表明,小电导钾通道蛋白SK2是UBE3A的底物,而突触SK2水平的增加会导致突触可塑性和恐惧条件记忆的损伤,因为抑制SK2通道能显著改善雄性AS小鼠的突触可塑性和恐惧记忆。在本研究中,我们研究了 UBE3a 介导的对雌性 AS 小鼠突触可塑性和恐惧调理记忆的调控。Western印迹和免疫荧光分析结果表明,与野生型小鼠相比,雌性AS小鼠海马中突触SK2水平显著升高。与雄性AS小鼠一样,与雌性WT小鼠相比,雌性AS小鼠海马CA3-CA1突触的长期延时(LTP)明显降低,而长期抑制(LTD)增强。用SK2抑制剂阿帕明治疗后,这两种改变都明显减少。与雌性WT小鼠相比,雌性AS小鼠SK2通道对NMDA受体的分流效应明显增大。雌性AS小鼠还表现出情境记忆和语调记忆回忆的障碍,而这种障碍在阿帕明治疗后明显减轻。我们的研究结果表明,与雄性AS小鼠一样,雌性AS小鼠也会因突触SK2通道水平的增加而在突触可塑性和恐惧条件反射记忆方面表现出明显的障碍。任何减少SK2介导的NMDAR抑制的治疗策略都应该对雄性和雌性患者有益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Plasticity
Neural Plasticity Neuroscience-Neurology
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.
期刊最新文献
Modulation of High-Frequency rTMS on Reward Circuitry in Individuals with Nicotine Dependence: A Preliminary fMRI Study. Identifying ADHD-Related Abnormal Functional Connectivity with a Graph Convolutional Neural Network The Application of tDCS to Treat Pain and Psychocognitive Symptoms in Cancer Patients: A Scoping Review Clinical Comparison between HD-tDCS and tDCS for Improving Upper Limb Motor Function: A Randomized, Double-Blinded, Sham-Controlled Trial The Alterations in the Brain Corresponding to Low Back Pain: Recent Insights and Advances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1