{"title":"Microstructural evolution of electrodes in sintering of multi-layer ceramic capacitors (MLCC) observed by synchrotron X-ray nano-CT","authors":"Gaku Okuma , Naoya Saito , Kotaro Mizuno , Yoshiki Iwazaki , Hiroshi Kishi , Akihisa Takeuchi , Masayuki Uesugi , Kentaro Uesugi , Fumihiro Wakai","doi":"10.1016/j.actamat.2020.116605","DOIUrl":null,"url":null,"abstract":"<div><p>Synchrotron X-ray nano computed tomography was used to investigate the microstructural evolution during co-sintering of multi-layer ceramic capacitors (MLCC) consisting of Ni electrodes and BaTiO<sub>3</sub> dielectric layers stacked alternately. As the electrode thickness reduced to submicron at the scale of a few particle diameters, the process produced the defect of inner electrode leading to capacitance loss. The discontinuous electrode region contained round holes and irregularly-shaped channels. The formation of discontinuity was associated with the increase of characteristic length of heterogeneous electrode structure, i.e., the coarsening occurred. The evolution of electrode morphology by surface/interface diffusion caused the breakup of ligament between two holes driven by instability induced by surface tension and stress. The ligament pinch-off inevitably generated sharp points which might enhance the local electric field bringing about the dielectric breakdown. A model was presented to explain the formation of defect from the heterogeneous particles packing in the electrode layer.</p></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"206 ","pages":"Article 116605"},"PeriodicalIF":9.3000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.actamat.2020.116605","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645420310429","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Synchrotron X-ray nano computed tomography was used to investigate the microstructural evolution during co-sintering of multi-layer ceramic capacitors (MLCC) consisting of Ni electrodes and BaTiO3 dielectric layers stacked alternately. As the electrode thickness reduced to submicron at the scale of a few particle diameters, the process produced the defect of inner electrode leading to capacitance loss. The discontinuous electrode region contained round holes and irregularly-shaped channels. The formation of discontinuity was associated with the increase of characteristic length of heterogeneous electrode structure, i.e., the coarsening occurred. The evolution of electrode morphology by surface/interface diffusion caused the breakup of ligament between two holes driven by instability induced by surface tension and stress. The ligament pinch-off inevitably generated sharp points which might enhance the local electric field bringing about the dielectric breakdown. A model was presented to explain the formation of defect from the heterogeneous particles packing in the electrode layer.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.