Durability performance of self-compacting concrete

IF 8 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Construction and Building Materials Pub Date : 2012-12-01 DOI:10.1016/j.conbuildmat.2012.07.049
Antonios Kanellopoulos, Michael F. Petrou, Ioannis Ioannou
{"title":"Durability performance of self-compacting concrete","authors":"Antonios Kanellopoulos,&nbsp;Michael F. Petrou,&nbsp;Ioannis Ioannou","doi":"10.1016/j.conbuildmat.2012.07.049","DOIUrl":null,"url":null,"abstract":"<div><p>Although self compacting concrete (SCC) is currently used in many countries, there is a fundamental lack of the intrinsic durability of the material itself. This article presents the outcomes from a research program on principal indicators that define the durability of SCC (sorptivity, porosity and chloride ion permeability) and compares these indicators with the corresponding parameters of conventional concrete. The results show, for the first time, that there is a correlation between the various durability indicators for the specific filler additives used in the mix designs incorporated in this paper. Such a correlation may be used to assess the durability of SCC without the need to rely on time consuming artificial weathering experimental procedures.</p></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"37 ","pages":"Pages 320-325"},"PeriodicalIF":8.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.conbuildmat.2012.07.049","citationCount":"89","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061812005193","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 89

Abstract

Although self compacting concrete (SCC) is currently used in many countries, there is a fundamental lack of the intrinsic durability of the material itself. This article presents the outcomes from a research program on principal indicators that define the durability of SCC (sorptivity, porosity and chloride ion permeability) and compares these indicators with the corresponding parameters of conventional concrete. The results show, for the first time, that there is a correlation between the various durability indicators for the specific filler additives used in the mix designs incorporated in this paper. Such a correlation may be used to assess the durability of SCC without the need to rely on time consuming artificial weathering experimental procedures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自密实混凝土的耐久性
尽管自密实混凝土(SCC)目前在许多国家使用,但从根本上缺乏材料本身固有的耐久性。本文介绍了定义SCC耐久性的主要指标(吸附性、孔隙率和氯离子渗透性)的研究结果,并将这些指标与传统混凝土的相应参数进行了比较。结果首次表明,本文所采用的混合料设计中使用的特定填充剂添加剂的各种耐久性指标之间存在相关性。这种相关性可以用来评估SCC的耐久性,而不需要依赖耗时的人工风化实验程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Construction and Building Materials
Construction and Building Materials 工程技术-材料科学:综合
CiteScore
13.80
自引率
21.60%
发文量
3632
审稿时长
82 days
期刊介绍: Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged. Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.
期刊最新文献
A temperature-dependent concrete damage plasticity (CDP) model for self-compacting concrete after exposure to elevated temperatures Decoupling the microwave non-thermal effect on tricalcium silicate hydration: Mechanisms of dissolution, ion diffusion, nucleation, and growth Corrosion-evolution and fatigue crack growth behaviour of Q370qENH weathering steel butt welds Electromagnetic absorbing cementitious materials prepared by alkali activation of steel slag and rice husk derivatives from solid waste Evolution of hysteretic behavior and cyclic constitutive model of novel TSZ410 ferritic stainless steel under salt spray corrosion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1