Agnieszka Szwajda, Prson Gautam, Leena Karhinen, Sawan Kumar Jha, Jani Saarela, Sushil Shakyawar, Laura Turunen, Bhagwan Yadav, Jing Tang, Krister Wennerberg, Tero Aittokallio
{"title":"Systematic Mapping of Kinase Addiction Combinations in Breast Cancer Cells by Integrating Drug Sensitivity and Selectivity Profiles.","authors":"Agnieszka Szwajda, Prson Gautam, Leena Karhinen, Sawan Kumar Jha, Jani Saarela, Sushil Shakyawar, Laura Turunen, Bhagwan Yadav, Jing Tang, Krister Wennerberg, Tero Aittokallio","doi":"10.1016/j.chembiol.2015.06.021","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical perturbation screens offer the possibility to identify actionable sets of cancer-specific vulnerabilities. However, most inhibitors of kinases or other cancer targets result in polypharmacological effects, which complicate the identification of target dependencies directly from the drug-response phenotypes. In this study, we developed a chemical systems biology approach that integrates comprehensive drug sensitivity and selectivity profiling to provide functional insights into both single and multi-target oncogenic signal addictions. When applied to 21 breast cancer cell lines, perturbed with 40 kinase inhibitors, the subtype-specific addiction patterns clustered in agreement with patient-derived subtypes, while showing considerable variability between the heterogeneous breast cancers. Experimental validation of the top predictions revealed a number of co-dependencies between kinase targets that led to unexpected synergistic combinations between their inhibitors, such as dasatinib and axitinib in the triple-negative basal-like HCC1937 cell line. </p>","PeriodicalId":9772,"journal":{"name":"Chemistry & biology","volume":"22 8","pages":"1144-55"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.chembiol.2015.06.021","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chembiol.2015.06.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/7/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Chemical perturbation screens offer the possibility to identify actionable sets of cancer-specific vulnerabilities. However, most inhibitors of kinases or other cancer targets result in polypharmacological effects, which complicate the identification of target dependencies directly from the drug-response phenotypes. In this study, we developed a chemical systems biology approach that integrates comprehensive drug sensitivity and selectivity profiling to provide functional insights into both single and multi-target oncogenic signal addictions. When applied to 21 breast cancer cell lines, perturbed with 40 kinase inhibitors, the subtype-specific addiction patterns clustered in agreement with patient-derived subtypes, while showing considerable variability between the heterogeneous breast cancers. Experimental validation of the top predictions revealed a number of co-dependencies between kinase targets that led to unexpected synergistic combinations between their inhibitors, such as dasatinib and axitinib in the triple-negative basal-like HCC1937 cell line.