Line tension and its influence on droplets and particles at surfaces

IF 8.7 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Progress in Surface Science Pub Date : 2017-02-01 DOI:10.1016/j.progsurf.2016.12.002
Bruce M. Law , Sean P. McBride , Jiang Yong Wang , Haeng Sub Wi , Govind Paneru , Santigo Betelu , Baku Ushijima , Youichi Takata , Bret Flanders , Fernando Bresme , Hiroki Matsubara , Takanori Takiue , Makoto Aratono
{"title":"Line tension and its influence on droplets and particles at surfaces","authors":"Bruce M. Law ,&nbsp;Sean P. McBride ,&nbsp;Jiang Yong Wang ,&nbsp;Haeng Sub Wi ,&nbsp;Govind Paneru ,&nbsp;Santigo Betelu ,&nbsp;Baku Ushijima ,&nbsp;Youichi Takata ,&nbsp;Bret Flanders ,&nbsp;Fernando Bresme ,&nbsp;Hiroki Matsubara ,&nbsp;Takanori Takiue ,&nbsp;Makoto Aratono","doi":"10.1016/j.progsurf.2016.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>In this review we examine the influence of the line tension <em>τ</em><span> on droplets and particles at surfaces. The line tension influences the nucleation behavior and contact angle of liquid droplets at both liquid and solid surfaces and alters the attachment energetics<span> of solid particles to liquid surfaces. Many factors, occurring over a wide range of length scales, contribute to the line tension. On atomic scales, atomic rearrangements and reorientations of submolecular components give rise to an atomic line tension contribution </span></span><em>τ<sub>atom</sub></em> (∼1<!--> <!-->nN), which depends on the similarity/dissimilarity of the droplet/particle surface composition compared with the surface upon which it resides. At nanometer length scales, an integration over the van der Waals interfacial potential gives rise to a mesoscale contribution |<em>τ<sub>vdW</sub></em>|<!--> <!-->∼<!--> <!-->1–100<!--> <span>pN while, at millimeter length scales, the gravitational potential provides a gravitational contribution </span><em>τ<sub>grav</sub></em> <!-->∼<!--> <!-->+1–10<!--> <!-->μN. <em>τ<sub>grav</sub></em> is always positive, whereas, <em>τ<sub>vdW</sub></em> can have either sign. Near wetting, for very small contact angle droplets, a negative line tension may give rise to a contact line instability. We examine these and other issues in this review.</p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"92 1","pages":"Pages 1-39"},"PeriodicalIF":8.7000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2016.12.002","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681616300363","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 80

Abstract

In this review we examine the influence of the line tension τ on droplets and particles at surfaces. The line tension influences the nucleation behavior and contact angle of liquid droplets at both liquid and solid surfaces and alters the attachment energetics of solid particles to liquid surfaces. Many factors, occurring over a wide range of length scales, contribute to the line tension. On atomic scales, atomic rearrangements and reorientations of submolecular components give rise to an atomic line tension contribution τatom (∼1 nN), which depends on the similarity/dissimilarity of the droplet/particle surface composition compared with the surface upon which it resides. At nanometer length scales, an integration over the van der Waals interfacial potential gives rise to a mesoscale contribution |τvdW|  1–100 pN while, at millimeter length scales, the gravitational potential provides a gravitational contribution τgrav  +1–10 μN. τgrav is always positive, whereas, τvdW can have either sign. Near wetting, for very small contact angle droplets, a negative line tension may give rise to a contact line instability. We examine these and other issues in this review.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线张力及其对表面液滴和颗粒的影响
在这篇综述中,我们研究了线张力τ对表面液滴和粒子的影响。线张力影响液滴在液体和固体表面的成核行为和接触角,改变固体颗粒与液体表面的附着力。在很宽的长度范围内发生的许多因素都会造成线张力。在原子尺度上,亚分子组分的原子重排和取向会产生原子线张力贡献τ原子(~ 1 nN),这取决于液滴/粒子表面组成与其所在表面的相似性/不相似性。在纳米尺度上,范德华界面势的积分产生中尺度贡献|τvdW| ~ 1-100 pN,而在毫米尺度上,引力势提供引力贡献τ重力~ + 1-10 μN。τ重力总是正的,而τvdW可以有任意一种符号。接近润湿时,对于接触角非常小的液滴,负的线张力可能引起接触线不稳定。我们在这篇综述中研究这些和其他问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Surface Science
Progress in Surface Science 工程技术-物理:凝聚态物理
CiteScore
11.30
自引率
0.00%
发文量
10
审稿时长
3 months
期刊介绍: Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.
期刊最新文献
Editorial Board Current perspective towards a general framework to describe and harness friction at the nanoscale Time-resolved photoemission electron microscopy of semiconductor interfaces Editorial Board Structural dynamics in atomic indium wires on silicon: From ultrafast probing to coherent vibrational control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1