{"title":"Conformal Magnifier: A Focus+Context Technique with Minimal Distortion.","authors":"Xin Zhao, Wei Zeng, Xianfeng Gu, Arie Kaufman, Wei Xu, Klaus Mueller","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We present the conformal magnifier, a novel interactive Focus+Context visualization technique to magnify a region of interest (ROI) using conformal mapping. Our framework allows the user to design an arbitrary magnifier to enlarge the features of interest while deforming part of the remaining areas without any cropping. By using conformal mapping, the ROI is magnified with minimal distortion, while the transition region is a smooth and continuous deformation between the focus and context regions. An interactive interface is designed for the user to select important features, design focus models of arbitrary shape and set deformation constraints to satisfy his/her specified requirements. We demonstrate the effectiveness, robustness and efficiency of our method using several applications: texts, maps, geographic images, data structures and multi-media visualization.</p>","PeriodicalId":91181,"journal":{"name":"Visualization : proceedings of the ... IEEE Conference on Visualization. IEEE Conference on Visualization","volume":"18 11","pages":"1928-1941"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4536825/pdf/nihms-211393.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visualization : proceedings of the ... IEEE Conference on Visualization. IEEE Conference on Visualization","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present the conformal magnifier, a novel interactive Focus+Context visualization technique to magnify a region of interest (ROI) using conformal mapping. Our framework allows the user to design an arbitrary magnifier to enlarge the features of interest while deforming part of the remaining areas without any cropping. By using conformal mapping, the ROI is magnified with minimal distortion, while the transition region is a smooth and continuous deformation between the focus and context regions. An interactive interface is designed for the user to select important features, design focus models of arbitrary shape and set deformation constraints to satisfy his/her specified requirements. We demonstrate the effectiveness, robustness and efficiency of our method using several applications: texts, maps, geographic images, data structures and multi-media visualization.