{"title":"Nano-NiFe LDH assembled on CNTs by electrostatic action as an efficient and durable electrocatalyst for oxygen evolution","authors":"Simin He, Ruimei Yue, Wentong Liu, Junxia Ding, Xiaolun Zhu, Nijuan Liu, Ruibin Guo, Zunli Mo","doi":"10.1016/j.jelechem.2023.117718","DOIUrl":null,"url":null,"abstract":"<div><p>The development of non noble metal electrocatalysts with high OER catalytic activity has become an urgent demand for water cracking. In this work, NiFe LDH nanobulks grown on CNTs were prepared by a green and simple one pot hydrothermal method. The acidified CNTs usually include hydroxyl, carboxyl and other oxygen-containing functional groups, which make the carbon tubes have a certain negative charge. The negatively charged CNTs can interact with the positively charged NiFe LDH nanobulks in an electrostatic manner, resulting in a self-assembly reaction to slow down the agglomeration of NiFe LDH nanobulks, better highlight the advantages of two-dimensional material structure, and expose greater specific surface area of activity. The introduction of CNTs can enhance the conductivity of the composite, accelerate the charge transfer in the reaction process, and further improve the OER catalytic performance of NiFe LDH/CNTs catalyst materials.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"946 ","pages":"Article 117718"},"PeriodicalIF":4.5000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665723005787","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
The development of non noble metal electrocatalysts with high OER catalytic activity has become an urgent demand for water cracking. In this work, NiFe LDH nanobulks grown on CNTs were prepared by a green and simple one pot hydrothermal method. The acidified CNTs usually include hydroxyl, carboxyl and other oxygen-containing functional groups, which make the carbon tubes have a certain negative charge. The negatively charged CNTs can interact with the positively charged NiFe LDH nanobulks in an electrostatic manner, resulting in a self-assembly reaction to slow down the agglomeration of NiFe LDH nanobulks, better highlight the advantages of two-dimensional material structure, and expose greater specific surface area of activity. The introduction of CNTs can enhance the conductivity of the composite, accelerate the charge transfer in the reaction process, and further improve the OER catalytic performance of NiFe LDH/CNTs catalyst materials.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.