Statistical approach for lysosomal membrane proteins (LMPs) identification.

Systems and Synthetic Biology Pub Date : 2014-12-01 Epub Date: 2014-08-02 DOI:10.1007/s11693-014-9153-7
Vijay Tripathi, Pooja Tripathi, Dwijendra Gupta
{"title":"Statistical approach for lysosomal membrane proteins (LMPs) identification.","authors":"Vijay Tripathi, Pooja Tripathi, Dwijendra Gupta","doi":"10.1007/s11693-014-9153-7","DOIUrl":null,"url":null,"abstract":"<p><p>Discrimination of Lysosomal membrane proteins (LMP's) from folding types of globular (GPs) and other membrane proteins (OtMPs) is an important task both for identifying LMPs from genomic sequences and for the successful prediction of their secondary and tertiary structures. We have systematically analyzed the amino acid frequencies as well as dipeptide count of GPs, LMPs and OtMPs. Based on the above calculated single amino acid frequency combined with dipeptide count information, we statistically discriminated LMPs from GPs and OtMPs. This approach correctly classified the LMPs with an accuracy of 95 %. On the other hand, the amino acid frequency alone can discriminate LMPs with an accuracy of only 79 %. Similarly dipeptide count alone has an accuracy of 87 % for the discrimination of LMPs. Thus the combined information of both amino acid frequencies and dipeptide composition gives us significant high accurate results. </p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571724/pdf/11693_2014_Article_9153.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11693-014-9153-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/8/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Discrimination of Lysosomal membrane proteins (LMP's) from folding types of globular (GPs) and other membrane proteins (OtMPs) is an important task both for identifying LMPs from genomic sequences and for the successful prediction of their secondary and tertiary structures. We have systematically analyzed the amino acid frequencies as well as dipeptide count of GPs, LMPs and OtMPs. Based on the above calculated single amino acid frequency combined with dipeptide count information, we statistically discriminated LMPs from GPs and OtMPs. This approach correctly classified the LMPs with an accuracy of 95 %. On the other hand, the amino acid frequency alone can discriminate LMPs with an accuracy of only 79 %. Similarly dipeptide count alone has an accuracy of 87 % for the discrimination of LMPs. Thus the combined information of both amino acid frequencies and dipeptide composition gives us significant high accurate results.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
溶酶体膜蛋白(LMPs)鉴定的统计方法。
将溶酶体膜蛋白(LMP)与折叠类型的球蛋白(GPs)和其他膜蛋白(OtMPs)区分开来,对于从基因组序列中识别 LMPs 以及成功预测其二级和三级结构都是一项重要任务。我们对 GPs、LMPs 和 OtMPs 的氨基酸频率和二肽数量进行了系统分析。根据上述计算出的单个氨基酸频率和二肽数量信息,我们对 LMPs 和 GPs 及 OtMPs 进行了统计判别。这种方法对 LMPs 的正确分类准确率高达 95%。另一方面,仅凭氨基酸频率来区分 LMP 的准确率仅为 79%。同样,仅用二肽数量来区分 LMP 的准确率为 87%。因此,氨基酸频率和二肽组成的综合信息可为我们提供显著的高精确度结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting stable functional peptides from the intergenic space of E. coli. The role of CRKL in breast cancer metastasis: insights from systems biology. The synthetic biology puzzle: a qualitative study on public reflections towards a governance framework. Exploring the differences in metabolic behavior of astrocyte and glioblastoma: a flux balance analysis approach. Evolving modular genetic regulatory networks with a recursive, top-down approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1