T O Yastreb, Yu E Kolupayev, A A Shvidenko, A A Lugovaya, A P Dmitriev
{"title":"[Salt Stress Response in Arabidopsis thaliana Plants with Defective Jasmonate Signaling].","authors":"T O Yastreb, Yu E Kolupayev, A A Shvidenko, A A Lugovaya, A P Dmitriev","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The effects of exogenous jasmonic acid (JA) on antioxidant enzymes in four-week-old leaves of wild-type Arabidopsis thaliana L. (Columbia-0) and jin1 (jasmonate insensitive 1) mutant plants with defective jasmonate signaling were investigated under normal conditions and under salt stress (200 mM NaCl, 24 h). The wild-type plants responded to JA by an increase in the activities of Cu/Zn superoxide dismutase, catalase, and guaiacol peroxidase, while there was no change in the case of the mutant plants. In response to the salt stress of both the wild-type and mutant genotypes, the activities of superoxide dismutase, catalase, and guaiacol peroxidase were unchanged, decreased, and increased, respectively. The JA-treated wild type plants showed the highest activity of all three enzymes as compared with the mutant plants. Salinity caused a decrease in chlorophyll content in the wild-type and jin 1 plants. Preliminary JA treatment of the Col-0 plants resulted in a normal content of photosynthetic pigments after the salt stress, while the positive JA effect was insignificant in the jin 1 mutants. It was concluded that the MYC2/JIN 1 protein is involved in the JA signal transduction and plant adaptation to salt stress.</p>","PeriodicalId":20415,"journal":{"name":"Prikladnaia biokhimiia i mikrobiologiia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prikladnaia biokhimiia i mikrobiologiia","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of exogenous jasmonic acid (JA) on antioxidant enzymes in four-week-old leaves of wild-type Arabidopsis thaliana L. (Columbia-0) and jin1 (jasmonate insensitive 1) mutant plants with defective jasmonate signaling were investigated under normal conditions and under salt stress (200 mM NaCl, 24 h). The wild-type plants responded to JA by an increase in the activities of Cu/Zn superoxide dismutase, catalase, and guaiacol peroxidase, while there was no change in the case of the mutant plants. In response to the salt stress of both the wild-type and mutant genotypes, the activities of superoxide dismutase, catalase, and guaiacol peroxidase were unchanged, decreased, and increased, respectively. The JA-treated wild type plants showed the highest activity of all three enzymes as compared with the mutant plants. Salinity caused a decrease in chlorophyll content in the wild-type and jin 1 plants. Preliminary JA treatment of the Col-0 plants resulted in a normal content of photosynthetic pigments after the salt stress, while the positive JA effect was insignificant in the jin 1 mutants. It was concluded that the MYC2/JIN 1 protein is involved in the JA signal transduction and plant adaptation to salt stress.