Privacy in Pharmacogenetics: An End-to-End Case Study of Personalized Warfarin Dosing.

Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page, Thomas Ristenpart
{"title":"Privacy in Pharmacogenetics: An End-to-End Case Study of Personalized Warfarin Dosing.","authors":"Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page, Thomas Ristenpart","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We initiate the study of privacy in pharmacogenetics, wherein machine learning models are used to guide medical treatments based on a patient's genotype and background. Performing an in-depth case study on privacy in personalized warfarin dosing, we show that suggested models carry privacy risks, in particular because attackers can perform what we call <i>model inversion</i>: an attacker, given the model and some demographic information about a patient, can predict the patient's genetic markers. As differential privacy (DP) is an oft-proposed solution for medical settings such as this, we evaluate its effectiveness for building private versions of pharmacogenetic models. We show that <i>DP mechanisms prevent our model inversion attacks when the privacy budget is carefully selected</i>. We go on to analyze the impact on utility by performing simulated clinical trials with DP dosing models. We find that for privacy budgets effective at preventing attacks, <i>patients would be exposed to increased risk of stroke, bleeding events, and mortality</i>. We conclude that <i>current</i> DP mechanisms do not simultaneously improve genomic privacy while retaining desirable clinical efficacy, highlighting the need for new mechanisms that should be evaluated <i>in situ</i> using the general methodology introduced by our work.</p>","PeriodicalId":91597,"journal":{"name":"Proceedings of the ... USENIX Security Symposium. UNIX Security Symposium","volume":"2014 ","pages":"17-32"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827719/pdf/nihms612853.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... USENIX Security Symposium. UNIX Security Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We initiate the study of privacy in pharmacogenetics, wherein machine learning models are used to guide medical treatments based on a patient's genotype and background. Performing an in-depth case study on privacy in personalized warfarin dosing, we show that suggested models carry privacy risks, in particular because attackers can perform what we call model inversion: an attacker, given the model and some demographic information about a patient, can predict the patient's genetic markers. As differential privacy (DP) is an oft-proposed solution for medical settings such as this, we evaluate its effectiveness for building private versions of pharmacogenetic models. We show that DP mechanisms prevent our model inversion attacks when the privacy budget is carefully selected. We go on to analyze the impact on utility by performing simulated clinical trials with DP dosing models. We find that for privacy budgets effective at preventing attacks, patients would be exposed to increased risk of stroke, bleeding events, and mortality. We conclude that current DP mechanisms do not simultaneously improve genomic privacy while retaining desirable clinical efficacy, highlighting the need for new mechanisms that should be evaluated in situ using the general methodology introduced by our work.

Abstract Image

Abstract Image

Abstract Image

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
药物遗传学中的隐私:个体化华法林剂量的端到端案例研究。
我们发起了药物遗传学中的隐私研究,其中机器学习模型用于根据患者的基因型和背景指导医疗。对个性化华法林剂量的隐私进行了深入的案例研究,我们表明,建议的模型存在隐私风险,特别是因为攻击者可以执行我们所谓的模型反转:攻击者,给定模型和一些关于患者的人口统计信息,可以预测患者的遗传标记。由于差分隐私(DP)是医疗环境中经常提出的解决方案,因此我们评估了其在构建私人版本药物遗传模型方面的有效性。我们表明,当隐私预算被仔细选择时,DP机制可以防止我们的模型反转攻击。我们继续通过使用DP给药模型进行模拟临床试验来分析对效用的影响。我们发现,如果隐私预算能够有效地预防攻击,患者将面临中风、出血事件和死亡的风险增加。我们得出的结论是,目前的DP机制不能同时改善基因组隐私,同时保持理想的临床疗效,强调需要新的机制,应该使用我们工作中介绍的一般方法进行原位评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Security of Visual Reasoning CAPTCHA A Highly Accurate Query-Recovery Attack against Searchable Encryption using Non-Indexed Documents Hot Pixels: Frequency, Power, and Temperature Attacks on GPUs and ARM SoCs PTW: Pivotal Tuning Watermarking for Pre-Trained Image Generators Inductive Graph Unlearning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1