PTW: Pivotal Tuning Watermarking for Pre-Trained Image Generators

Nils Lukas, F. Kerschbaum
{"title":"PTW: Pivotal Tuning Watermarking for Pre-Trained Image Generators","authors":"Nils Lukas, F. Kerschbaum","doi":"10.48550/arXiv.2304.07361","DOIUrl":null,"url":null,"abstract":"Deepfakes refer to content synthesized using deep generators, which, when misused, have the potential to erode trust in digital media. Synthesizing high-quality deepfakes requires access to large and complex generators only a few entities can train and provide. The threat is malicious users that exploit access to the provided model and generate harmful deepfakes without risking detection. Watermarking makes deepfakes detectable by embedding an identifiable code into the generator that is later extractable from its generated images. We propose Pivotal Tuning Watermarking (PTW), a method for watermarking pre-trained generators (i) three orders of magnitude faster than watermarking from scratch and (ii) without the need for any training data. We improve existing watermarking methods and scale to generators $4 \\times$ larger than related work. PTW can embed longer codes than existing methods while better preserving the generator's image quality. We propose rigorous, game-based definitions for robustness and undetectability and our study reveals that watermarking is not robust against an adaptive white-box attacker who has control over the generator's parameters. We propose an adaptive attack that can successfully remove any watermarking with access to only $200$ non-watermarked images. Our work challenges the trustworthiness of watermarking for deepfake detection when the parameters of a generator are available. Source code to reproduce our experiments is available at https://github.com/dnn-security/gan-watermark.","PeriodicalId":91597,"journal":{"name":"Proceedings of the ... USENIX Security Symposium. UNIX Security Symposium","volume":"6 1 1","pages":"2241-2258"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... USENIX Security Symposium. UNIX Security Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.07361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Deepfakes refer to content synthesized using deep generators, which, when misused, have the potential to erode trust in digital media. Synthesizing high-quality deepfakes requires access to large and complex generators only a few entities can train and provide. The threat is malicious users that exploit access to the provided model and generate harmful deepfakes without risking detection. Watermarking makes deepfakes detectable by embedding an identifiable code into the generator that is later extractable from its generated images. We propose Pivotal Tuning Watermarking (PTW), a method for watermarking pre-trained generators (i) three orders of magnitude faster than watermarking from scratch and (ii) without the need for any training data. We improve existing watermarking methods and scale to generators $4 \times$ larger than related work. PTW can embed longer codes than existing methods while better preserving the generator's image quality. We propose rigorous, game-based definitions for robustness and undetectability and our study reveals that watermarking is not robust against an adaptive white-box attacker who has control over the generator's parameters. We propose an adaptive attack that can successfully remove any watermarking with access to only $200$ non-watermarked images. Our work challenges the trustworthiness of watermarking for deepfake detection when the parameters of a generator are available. Source code to reproduce our experiments is available at https://github.com/dnn-security/gan-watermark.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PTW:关键调整水印预训练图像生成器
深度伪造指的是使用深度生成器合成的内容,如果使用不当,有可能侵蚀人们对数字媒体的信任。合成高质量的深度伪造需要使用大型和复杂的生成器,只有少数实体可以训练和提供。威胁是恶意用户利用对所提供模型的访问并生成有害的深度伪造,而不会冒被检测到的风险。水印通过将可识别的代码嵌入到生成器中,然后从生成的图像中提取,从而可以检测到深度伪造。我们提出了关键调谐水印(PTW),这是一种对预训练生成器进行水印的方法(i)比从头开始水印快三个数量级,(ii)不需要任何训练数据。我们改进了现有的水印方法,并扩展到比相关工作大4倍的生成器。PTW可以嵌入比现有方法更长的代码,同时更好地保持生成器的图像质量。我们提出了严格的、基于游戏的鲁棒性和不可检测性定义,我们的研究表明,水印对于控制生成器参数的自适应白盒攻击者来说是不鲁棒的。我们提出了一种自适应攻击,可以成功地删除任何水印,仅访问$200$非水印图像。当发生器参数可用时,我们的工作挑战了深度伪造检测水印的可信度。复制我们实验的源代码可在https://github.com/dnn-security/gan-watermark上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Security of Visual Reasoning CAPTCHA A Highly Accurate Query-Recovery Attack against Searchable Encryption using Non-Indexed Documents Hot Pixels: Frequency, Power, and Temperature Attacks on GPUs and ARM SoCs PTW: Pivotal Tuning Watermarking for Pre-Trained Image Generators Inductive Graph Unlearning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1