Mark B Plotnikov, Oleg I Aliev, Alexey V Nosarev, Alexander Y Shamanaev, Anastasia V Sidekhmenova, Yana Anfinogenova, Anna M Anishchenko, Ekaterina V Pushkina
{"title":"Relationship between arterial blood pressure and blood viscosity in spontaneously hypertensive rats treated with pentoxifylline.","authors":"Mark B Plotnikov, Oleg I Aliev, Alexey V Nosarev, Alexander Y Shamanaev, Anastasia V Sidekhmenova, Yana Anfinogenova, Anna M Anishchenko, Ekaterina V Pushkina","doi":"10.3233/BIR-15100","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Systemic arterial pressure (AP) depends on two physiological variables: cardiac output (CO) and total peripheral resistance (TPR). The latter depends on vascular hindrance and blood viscosity (BV). However, the relative contributions of the vascular and rheological factors to TPR remain unclear.</p><p><strong>Objective: </strong>The aim of our work was to study the haemodynamic and haemorheologic effects of a treatment course with pentoxifylline (PTX) in SHRs in an effort to assess the impact of the rheological factor on TPR and AP.</p><p><strong>Methods: </strong>The effects of the treatment course with PTX (100 mg/kg/day p.o. for six weeks) on BV, plasma viscosity, haematocrit, erythrocyte aggregation and deformability, mean AP (MAP), stroke volume (SV), CO, and TPR were studied in SHRs and in control Wistar Kyoto (WKY) rats.</p><p><strong>Results: </strong>PTX-treated SHRs had a lower BV, lower erythrocyte aggregation, and higher erythrocyte deformability index compared with the controls. The TPR level was higher by 43% compared with that in WKY rats and did not differ from the values obtained from control SHRs. In SHRs, moderate and strong positive correlations were found between BV and MAP and between BV and TPR. PTX-treated SHRs did not have any significant correlations between the above mentioned parameters.</p><p><strong>Conclusions: </strong>Treatment with PTX attenuated whole blood viscosity, but did not affect the AP and hemodynamic parameters in the experimental SHRs compared with the control SHRs. The magnitude of the rheologic effects of PTX was insufficient to cause appreciable decreases in TPR and AP.</p>","PeriodicalId":9167,"journal":{"name":"Biorheology","volume":"53 2","pages":"93-107"},"PeriodicalIF":1.0000,"publicationDate":"2016-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BIR-15100","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biorheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/BIR-15100","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 9
Abstract
Background: Systemic arterial pressure (AP) depends on two physiological variables: cardiac output (CO) and total peripheral resistance (TPR). The latter depends on vascular hindrance and blood viscosity (BV). However, the relative contributions of the vascular and rheological factors to TPR remain unclear.
Objective: The aim of our work was to study the haemodynamic and haemorheologic effects of a treatment course with pentoxifylline (PTX) in SHRs in an effort to assess the impact of the rheological factor on TPR and AP.
Methods: The effects of the treatment course with PTX (100 mg/kg/day p.o. for six weeks) on BV, plasma viscosity, haematocrit, erythrocyte aggregation and deformability, mean AP (MAP), stroke volume (SV), CO, and TPR were studied in SHRs and in control Wistar Kyoto (WKY) rats.
Results: PTX-treated SHRs had a lower BV, lower erythrocyte aggregation, and higher erythrocyte deformability index compared with the controls. The TPR level was higher by 43% compared with that in WKY rats and did not differ from the values obtained from control SHRs. In SHRs, moderate and strong positive correlations were found between BV and MAP and between BV and TPR. PTX-treated SHRs did not have any significant correlations between the above mentioned parameters.
Conclusions: Treatment with PTX attenuated whole blood viscosity, but did not affect the AP and hemodynamic parameters in the experimental SHRs compared with the control SHRs. The magnitude of the rheologic effects of PTX was insufficient to cause appreciable decreases in TPR and AP.
期刊介绍:
Biorheology is an international interdisciplinary journal that publishes research on the deformation and flow properties of biological systems or materials. It is the aim of the editors and publishers of Biorheology to bring together contributions from those working in various fields of biorheological research from all over the world. A diverse editorial board with broad international representation provides guidance and expertise in wide-ranging applications of rheological methods to biological systems and materials.
The scope of papers solicited by Biorheology extends to systems at different levels of organization that have never been studied before, or, if studied previously, have either never been analyzed in terms of their rheological properties or have not been studied from the point of view of the rheological matching between their structural and functional properties. This biorheological approach applies in particular to molecular studies where changes of physical properties and conformation are investigated without reference to how the process actually takes place, how the forces generated are matched to the properties of the structures and environment concerned, proper time scales, or what structures or strength of structures are required.