Differentiation Potential of Mesenchymal Stem Cells from Equine Bone Marrow Cultured on Hyaluronic Acid-Chitosan Polyelectrolyte Multilayer Biofilm.
Q4 Biochemistry, Genetics and Molecular BiologyJournal of Stem CellsPub Date : 2015-01-01
Amanda J Listoni, Isadora Arruda, Leandro Maia, Danielle J Barberini, Ian Martins, Fernando C Vasconcellos, Fernanda C Landim-Alvarenga
{"title":"Differentiation Potential of Mesenchymal Stem Cells from Equine Bone Marrow Cultured on Hyaluronic Acid-Chitosan Polyelectrolyte Multilayer Biofilm.","authors":"Amanda J Listoni, Isadora Arruda, Leandro Maia, Danielle J Barberini, Ian Martins, Fernando C Vasconcellos, Fernanda C Landim-Alvarenga","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Nanotechnology techniques have a prominent role in the current technical and scientific scene. The layer-by-layer (LbL) deposition allows obtaining nanostructures with sophisticated multilayer, using a simple, but versatile technique. This procedure, which is used to coat and functionalize surfaces with nanometer- thick films, has applications in bioengineering, medicine, chemistry, materials and chemical engineering among other areas. Chitosan is a biomaterial, coming from the chitin, a very abundant polymer in nature, which has been recently tested as scaffolds. In this experiment we test the hypothesis that the hyaluronic acid-chitosan polyelectrolyte multilayer biofilm would be a good substrate to the adherence of equine mesenchymal stem cells derived from bone marrow. The results showed that these biofilms accelerate the process of cell adhesion on smooth surfaces, allowing a constant cell growth and creating a great option to cover surgical materials.</p>","PeriodicalId":53626,"journal":{"name":"Journal of Stem Cells","volume":"10 2","pages":"69-77"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stem Cells","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Nanotechnology techniques have a prominent role in the current technical and scientific scene. The layer-by-layer (LbL) deposition allows obtaining nanostructures with sophisticated multilayer, using a simple, but versatile technique. This procedure, which is used to coat and functionalize surfaces with nanometer- thick films, has applications in bioengineering, medicine, chemistry, materials and chemical engineering among other areas. Chitosan is a biomaterial, coming from the chitin, a very abundant polymer in nature, which has been recently tested as scaffolds. In this experiment we test the hypothesis that the hyaluronic acid-chitosan polyelectrolyte multilayer biofilm would be a good substrate to the adherence of equine mesenchymal stem cells derived from bone marrow. The results showed that these biofilms accelerate the process of cell adhesion on smooth surfaces, allowing a constant cell growth and creating a great option to cover surgical materials.