[PK/PD Modeling as a Tool for Predicting Bacterial Resistance to Antibiotics: Alternative Analyses of Experimental Data].

Q4 Medicine Antibiotiki i Khimioterapiya Pub Date : 2015-01-01
M V Golikova, E N Strukova, Y A Portnoy, A A Firsov
{"title":"[PK/PD Modeling as a Tool for Predicting Bacterial Resistance to Antibiotics: Alternative Analyses of Experimental Data].","authors":"M V Golikova,&nbsp;E N Strukova,&nbsp;Y A Portnoy,&nbsp;A A Firsov","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Postexposure number of mutants (NM) is a conventional endpoint in bacterial resistance studies using in vitro dynamic models that simulate antibiotic pharmacokinetics. To compare NM with a recently introduced integral parameter AUBC(M), the area under the time course of resistance mutants, the enrichment of resistant Staphylococcus aureus was studied in vitro by simulation of mono(daptomycin, doxycycline) and combined treatments (daptomycin + rifampicin, rifampicin + linezolid). Differences in the time courses of resistant S. aureus could be reflected by AUBC(M) but not N(M). Moreover, unlike AUBC(M), N(M) did not reflect the pronounced differences in the time courses of S. aureus mutants resistant to 2x, 4x, 8x and 16xMIC of doxycycline and rifampicin. The findings suggested that AUBC(M) was a more appropriate endpoint of the amplification of resistant mutants than N(M).</p>","PeriodicalId":53646,"journal":{"name":"Antibiotiki i Khimioterapiya","volume":"60 9-10","pages":"12-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotiki i Khimioterapiya","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Postexposure number of mutants (NM) is a conventional endpoint in bacterial resistance studies using in vitro dynamic models that simulate antibiotic pharmacokinetics. To compare NM with a recently introduced integral parameter AUBC(M), the area under the time course of resistance mutants, the enrichment of resistant Staphylococcus aureus was studied in vitro by simulation of mono(daptomycin, doxycycline) and combined treatments (daptomycin + rifampicin, rifampicin + linezolid). Differences in the time courses of resistant S. aureus could be reflected by AUBC(M) but not N(M). Moreover, unlike AUBC(M), N(M) did not reflect the pronounced differences in the time courses of S. aureus mutants resistant to 2x, 4x, 8x and 16xMIC of doxycycline and rifampicin. The findings suggested that AUBC(M) was a more appropriate endpoint of the amplification of resistant mutants than N(M).

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[PK/PD模型作为预测细菌对抗生素耐药性的工具:实验数据的替代分析]。
暴露后突变体数量(NM)是利用体外动态模型模拟抗生素药代动力学进行细菌耐药性研究的传统终点。为了比较NM与最近引入的耐药突变体时间进程下的积分参数AUBC(M),通过模拟单药(达托霉素、强力霉素)和联合治疗(达托霉素+利福平、利福平+利奈唑胺),研究了耐药金黄色葡萄球菌在体外的富集情况。耐药金黄色葡萄球菌时间进程的差异可以用AUBC(M)来反映,但不能用N(M)来反映。此外,与AUBC(M)不同,N(M)并没有反映金黄色葡萄球菌突变体对强力霉素和利福平的2倍、4倍、8倍和16倍mic耐药时间的显著差异。结果表明,AUBC(M)比N(M)更适合作为耐药突变体扩增的终点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Antibiotiki i Khimioterapiya
Antibiotiki i Khimioterapiya Medicine-Infectious Diseases
CiteScore
0.80
自引率
0.00%
发文量
46
期刊最新文献
Modern Ideas about Vaccination of Patients with Rheumatic Diseases: the View of ACR Experts Dynamics of Reserve Antimicrobial Drug Consumption in Russian Hospitals: Impact of the COVID-19 Pandemic Rationality of Cytoflavin Inclusion in the Treatment of Patients with Dermatological Pathology Comorbid with Mental Disorders Pharmacogenetic Markers of Favipiravir Safety in COVID-19 Treatment The Results of Preclinical Studies Assessing the Effect of Riamilovir on the Reproductive Function and Postnatal Growth of Offspring in Laboratory Animals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1