ELECTROSPUN MESOFIBERS, A NOVEL BIODEGRADABLE PHEROMONE DISPENSER TECHNOLOGY, ARE COMBINED WITH MECHANICAL DEPLOYMENT FOR EFFICIENT IPM OF LOBESIA BOTRANA IN VINEYARDS.
{"title":"ELECTROSPUN MESOFIBERS, A NOVEL BIODEGRADABLE PHEROMONE DISPENSER TECHNOLOGY, ARE COMBINED WITH MECHANICAL DEPLOYMENT FOR EFFICIENT IPM OF LOBESIA BOTRANA IN VINEYARDS.","authors":"Hans E Hummel, S S Langner, M Breuer","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Behaviour modifying pheromones are well known agents for disrupting mating communication of pest insects. For optimal activity, they must be dispensed in time and space at a quantitatively measurable, predetermined release rate covering the flight period of the target species. Pheromones appeal to environmentally conscientious entomologists for their biodegradability, non-toxicity and ecological compatibility. In attempts of combining the virtues of pheromones, suitable slow release dispensers, and their mechanical deployment, an ecologically sensible, reasonably priced and patented procedure was developed and tested with the vineyard pest Lobesia botrana (Lep.: Tortricidae). It is characterized by (1) Electrospun mesofibers with diameters ranging from 0.6 to 3.5 micrometres, containing disruptants and dispensing it by slow release diffusion into the crop, (2) simultaneous application of the fully biodegradable combination of pheromone with Ecoflex polyester mesofiber, (3) combination of mechanical deployment by multi-purpose cultivators of the prefabricated pheromone dispensers with other simultaneous cultivation measures, and thus further reducing labour time and treatment costs. The dispensers are biodegradable within half a year without leaving any objectionable residues. In the standard eco-toxicology tests pheromone dispensers are harmless to non-target organisms. The disruptive effect of one treatment lasts for seven weeks which covers well one of several flight periods of L. botrana.</p>","PeriodicalId":10565,"journal":{"name":"Communications in agricultural and applied biological sciences","volume":"80 3","pages":"331-41"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in agricultural and applied biological sciences","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Behaviour modifying pheromones are well known agents for disrupting mating communication of pest insects. For optimal activity, they must be dispensed in time and space at a quantitatively measurable, predetermined release rate covering the flight period of the target species. Pheromones appeal to environmentally conscientious entomologists for their biodegradability, non-toxicity and ecological compatibility. In attempts of combining the virtues of pheromones, suitable slow release dispensers, and their mechanical deployment, an ecologically sensible, reasonably priced and patented procedure was developed and tested with the vineyard pest Lobesia botrana (Lep.: Tortricidae). It is characterized by (1) Electrospun mesofibers with diameters ranging from 0.6 to 3.5 micrometres, containing disruptants and dispensing it by slow release diffusion into the crop, (2) simultaneous application of the fully biodegradable combination of pheromone with Ecoflex polyester mesofiber, (3) combination of mechanical deployment by multi-purpose cultivators of the prefabricated pheromone dispensers with other simultaneous cultivation measures, and thus further reducing labour time and treatment costs. The dispensers are biodegradable within half a year without leaving any objectionable residues. In the standard eco-toxicology tests pheromone dispensers are harmless to non-target organisms. The disruptive effect of one treatment lasts for seven weeks which covers well one of several flight periods of L. botrana.