Adriano Azaripour , Tonny Lagerweij , Christina Scharfbillig , Anna Elisabeth Jadczak , Brita Willershausen , Cornelis J.F. Van Noorden
{"title":"A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue","authors":"Adriano Azaripour , Tonny Lagerweij , Christina Scharfbillig , Anna Elisabeth Jadczak , Brita Willershausen , Cornelis J.F. Van Noorden","doi":"10.1016/j.proghi.2016.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>For 3-dimensional (3D) imaging of a tissue, 3 methodological steps are essential and their successful application depends on specific characteristics of the type of tissue. The steps are 1° clearing of the opaque tissue to render it transparent for microscopy, 2° fluorescence labeling of the tissues and 3° 3D imaging. In the past decades, new methodologies were introduced for the clearing steps with their specific advantages and disadvantages. Most clearing techniques have been applied to the central nervous system and other organs that contain relatively low amounts of connective tissue including extracellular matrix. However, tissues that contain large amounts of extracellular matrix such as dermis in skin or gingiva are difficult to clear. The present survey lists methodologies that are available for clearing of tissues for 3D imaging. We report here that the BABB method using a mixture of benzyl alcohol and benzyl benzoate and iDISCO using dibenzylether (DBE) are the most successful methods for clearing connective tissue-rich gingiva and dermis of skin for 3D histochemistry and imaging of fluorescence using light-sheet microscopy.</p></div>","PeriodicalId":54550,"journal":{"name":"Progress in Histochemistry and Cytochemistry","volume":"51 2","pages":"Pages 9-23"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.proghi.2016.04.001","citationCount":"138","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Histochemistry and Cytochemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079633616300043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 138
Abstract
For 3-dimensional (3D) imaging of a tissue, 3 methodological steps are essential and their successful application depends on specific characteristics of the type of tissue. The steps are 1° clearing of the opaque tissue to render it transparent for microscopy, 2° fluorescence labeling of the tissues and 3° 3D imaging. In the past decades, new methodologies were introduced for the clearing steps with their specific advantages and disadvantages. Most clearing techniques have been applied to the central nervous system and other organs that contain relatively low amounts of connective tissue including extracellular matrix. However, tissues that contain large amounts of extracellular matrix such as dermis in skin or gingiva are difficult to clear. The present survey lists methodologies that are available for clearing of tissues for 3D imaging. We report here that the BABB method using a mixture of benzyl alcohol and benzyl benzoate and iDISCO using dibenzylether (DBE) are the most successful methods for clearing connective tissue-rich gingiva and dermis of skin for 3D histochemistry and imaging of fluorescence using light-sheet microscopy.
期刊介绍:
Progress in Histochemistry and Cytochemistry publishes comprehensive and analytical reviews within the entire field of histochemistry and cytochemistry. Methodological contributions as well as papers in the fields of applied histo- and cytochemistry (e.g. cell biology, pathology, clinical disciplines) will be accepted.